摘要:
A solid oxide fuel cell is formed by arranging a fuel electrode layer and an air electrode layer on both surfaces of a solid electrolyte, respectively, a fuel electrode current collector and an air electrode current collector outside the fuel electrode layer and the air electrode layer, respectively, and separators outside the fuel electrode current collector and the air electrode current collector. In a first embodiment, a fuel gas and an oxidant gas are supplied from the separators to the fuel electrode layer and the oxidant electrode layer, respectively, through the fuel electrode current collector and the air electrode current collector, respectively. Each separator is formed by laminating a plurality of thin metal plates at least including a thin metal plate in which a first gas discharge opening is arranged in a central part and second gas discharge openings are circularly arranged in a peripheral part, and a thin metal plate with an indented surface. Gases discharged from the separators can be supplied to entire areas of the electrode layers through the current collectors, so that electric power generation can be performed.
摘要:
There is disclosed a precious metal article which is formed of a solid-phase sintered product of a precious metal powder. For manufacturing the precious metal article, a moldable mixture which contains a precious metal powder and a binder removable by sintering is shaped into a prescribed molded object, and the molded object is then subjected to sintering. The moldable mixture is produced by preparing a precious metal powder, preparing a jellylike cellulose binder by blending a cellulose with water and leaving for a prescribed period of time, and blending the precious metal powder and the jellylike cellulose binder together. The most preferable moldable mixture contains 50 to 90% by weight of precious metal powder, 0.8 to 8% by weight of water-soluble cellulose binder, 0.08 to 3% by weight of a surface-active agent. 0.1 to 3% by weight of oil, balance water and unavoidable impurities. The precious metal powder preferably contains gold powder and powder of an alloy containing silver or copper, and the gold powder is obtained by submerged-reduction method.
摘要:
A solid oxide fuel cell is formed by arranging a fuel electrode layer and an air electrode layer on both surfaces of a solid electrolyte, respectively, a fuel electrode current collector and an air electrode current collector outside the fuel electrode layer and the air electrode layer, respectively, and separators outside the fuel electrode current collector and the air electrode current collector. A fuel gas and an oxidant gas are supplied from the separators to the fuel electrode layers and the oxidant electrode layers, respectively, through the fuel electrode current collectors and the air electrode current collectors, respectively. Alternatively, indents are provided on the surface of each of the separators, which surface is in contact with one of the current collectors, to increase the dwell volume and hence the retaining time of the gas in the interior of the current collectors.
摘要:
A conductive and tabular separator is inserted into the gap between the fuel electrode layer of an i-th power generating cell and the oxidizer electrode layer of an (i+l)-th power generating cell adjacent to the fuel electrode layer. A fuel supply passage is so formed on one face of each of these separators that a fuel gas flows radially from almost the center of the fuel electrode layer to its edge. An oxidizer supply passage is so formed on the other face that an oxidizer gas outgoes almost uniformly in a shower toward the oxidizer polar layer. Thus, all of the surfaces of the power generating cells contribute to power generation to increase the frequency of collision between the fuel gas and the fuel electrode layer and that between the oxidizer gas and the oxidizer electrode layer, and to improve the generation efficiency.
摘要:
A solid oxide fuel cell is formed by arranging a fuel electrode layer and an air electrode layer on both surfaces of a solid electrolyte, respectively, a fuel electrode current collector and an air electrode current collector outside the fuel electrode layer and the air electrode layer, respectively, and separators outside the fuel electrode current collector and the air electrode current collector. In a first embodiment, a fuel gas and an oxidant gas are supplied from the separators to the fuel electrode layer and the oxidant electrode layer, respectively, through the fuel electrode current collector and the air electrode current collector, respectively. Each separator is formed by laminating a plurality of thin metal plates at least including a thin metal plate in which a first gas discharge opening is arranged in a central part and second gas discharge openings are circularly arranged in a peripheral part, and a thin metal plate with an indented surface. Gases discharged from the separators can be supplied to entire areas of the electrode layers through the current collectors, so that electric power generation can be performed.
摘要:
A solid electrolyte type fuel cell which incorporates a metal separator comprising a base material of a metal other than silver or a silver alloy which is plated with silver or a silver alloy. The fuel cell can achieve improved efficiency for electricity generation with no increase of the resistance of the metal separator, even when it is operated at a low temperature.
摘要:
A solid oxide fuel cell is formed by arranging a fuel electrode layer and an air electrode layer on both surfaces of a solid electrolyte, respectively, a fuel electrode current collector and an air electrode current collector outside the fuel electrode layer and the air electrode layer, respectively, and separators outside the fuel electrode current collector and the air electrode current collector. In a first embodiment, a fuel gas and an oxidant gas are supplied from the separators to the fuel electrode layer and the oxidant electrode layer, respectively, through the fuel electrode current collector and the air electrode current collector, respectively. Each separator is formed by laminating a plurality of thin metal plates at least including a thin metal plate in which a first gas discharge opening is arranged in a central part and second gas discharge openings are circularly arranged in a peripheral part, and a thin metal plate with an indented surface. Gases discharged from the separators can be supplied to entire areas of the electrode layers through the current collectors, so that electric power generation can be performed.
摘要:
A solid electrolyte type fuel cell which incorporates a metal separator comprising a base material of a metal other than silver or a silver alloy which is plated with silver or a silver alloy. The fuel cell can achieve improved efficiency for electricity generation with no increase of the resistance of the metal separator, even when it is operated at a low temperature.
摘要:
An electric power generation cell 1 is constituted by arranging a fuel electrode layer 4 on one side of a solid electrolyte layer 3 and an air electrode layer 2 on the other side of the solid electrolyte layer 3. The solid electrolyte layer 3 is constituted of an oxide ion conductor mainly composed of a lanthanum gallate based oxide. The fuel electrode layer 4 is constituted of a porous sintered compact having a highly dispersed network structure in which a skeletal structure formed of a consecutive array of metal grains is surrounded by mixed conductive oxide grains. For the air electrode layer 2, a porous sintered compact mainly composed of cobaltite is used. This configuration reduces the overpotentials of the respective electrodes and the IR loss of the solid electrolyte layer 3, and accordingly can actualize a solid oxide type fuel cell excellent in electric power generation efficiency.
摘要:
A conductive and tabular separator is inserted into the gap between the fuel electrode layer of an i-th power generating cell and the oxidizer electrode layer of an (i+l)-th power generating cell adjacent to the fuel electrode layer. A fuel supply passage is so formed on one face of each of these separators that a fuel gas flows radially from almost the center of the fuel electrode layer to its edge. An oxidizer supply passage is so formed on the other face that an oxidizer gas outgoes almost uniformly in a shower toward the oxidizer polar layer. Thus, all of the surfaces of the power generating cells contribute to power generation to increase the frequency of collision between the fuel gas and the fuel electrode layer and that between the oxidizer gas and the oxidizer electrode layer, and to improve the generation efficiency.