摘要:
An InSb-based switching device, which operates at room temperature by using a magnetic field controlled avalanche process for applying to magneto-logic elements, is provided. A switching device of one embodiment includes a p-type semiconductor layer; an n-type semiconductor layer; and contact layers disposed on one of the p-type and n-type semiconductor layers, the p-type semiconductor layer being in contact with the n-type semiconductor layer such that a current can be applied through the contact layers to the p-type and n-type semiconductor layers to cause a current flow from one of the contact layers to the p-type and n-type semiconductor layers and from the p-type and n-type semiconductor layers to the other of the contact layers, whereby the current flow can be controlled by an intensity of a magnetic field applied to the p-type and n-type semiconductor layers substantially perpendicularly thereto.
摘要:
Provided is a semiconductor integrated circuit. The semiconductor integrated circuit comprises: a pair of interconnections; a fuse connecting the pair of interconnections; and one or more heat dissipation patterns connecting the pair of interconnections and are disposed around the fuse.
摘要:
A semiconductor integrated circuit includes a multi-chip package having a plurality of semiconductor chips. The semiconductor integrated circuit includes a signal line; and a signal loading compensation section in a semiconductor chip among the plurality of semiconductor chips, configured to apply a designed signal loading to the signal line in response to activation of a test signal. Here, the designed signal loading has a value corresponding to a signal loading component of another semiconductor chip among the plurality of semiconductor chips to the signal line.
摘要:
The present invention provides an InSb-based switching device operating at room temperature by using a magnetic field controlled avalanche process for applying to magneto-logic elements. A switching device of one embodiment includes a p-type semiconductor layer; an n-type semiconductor layer; and contact layers disposed on one of the p-type and n-type semiconductor layers, the p-type semiconductor layer being in contact with the n-type semiconductor layer such that a current can be applied through the contact layers to the p-type and n-type semiconductor layers to cause a current flow from one of the contact layers to the p-type and n-type semiconductor layers and from the p-type and n-type semiconductor layers to the other of the contact layers, whereby the current flow can be controlled by an intensity of a magnetic field applied to the p-type and n-type semiconductor layers substantially perpendicularly thereto.
摘要:
A semiconductor memory apparatus is capable of improving the alignment margin for a bank and sufficiently ensuring a space for forming a global input/output line. The semiconductor memory apparatus includes a stack bank structure having at least two sub-banks continuously stacked without disconnection of data signal lines, and a control block arranged at one side of the stack bank structure to simultaneously control column-related signals of the sub-banks.
摘要:
A disk receiving and transferring device by which a disk is precisely guided into the disk drive. Disks of different diameter can be inserted into a single disk drive, and at the same time gears are smoothly engaged during power transmission for the clamping of a disk. The disk receiving and transferring device of the invention includes: a disk transferor for transferring a disk by the power of a driving source; a balance guide unit for guiding the disk inserted into the device by the transferor for thereby precisely inserting the disk; a holder guide unit which interlocks with the balance guide unit and is guided by the balance guide unit for thereby receiving the disk moved by the transferor and guiding the disk until the disk transfer is finished; and a sensor guide unit for interlocking with the holder guide unit, guiding the disk by the insertion power of the disk, and connecting the power for clamping the disk, wherein the balance guide unit and holder guide unit are configured to be fastened when the power of the driving source is connected.
摘要:
A semiconductor integrated circuit includes a multi-chip package having a plurality of semiconductor chips. The semiconductor integrated circuit includes a signal line; and a signal loading compensation section in a semiconductor chip among the plurality of semiconductor chips, configured to apply a designed signal loading to the signal line in response to activation of a test signal. Here, the designed signal loading has a value corresponding to a signal loading component of another semiconductor chip among the plurality of semiconductor chips to the signal line.
摘要:
Various embodiments of a semiconductor apparatus are disclosed. In one exemplary embodiment, a semiconductor apparatus may include a memory block chip and a signal input/output chip. The memory block chip is configured to control a data access size according to specifications. The signal input/output chip is configured to transmit input data from an external device to the memory block chip or transmit output data from the memory block chip to an external device and process the input data or the output data by selectively enabling a clock phase control unit and a signal processing unit according to the specifications.
摘要:
A repair circuit of a semiconductor apparatus includes a plurality of through-silicon vias including repeated sets of one repair through-silicon via and an M number of normal through-silicon vias; a transmission unit configured to multiplex input data at a first multiplexing rate based on control signals, and transmit the multiplexed data to the plurality of through-silicon vias; a reception unit configured to multiplex signals transmitted through the plurality of through-silicon vias at a second multiplexing rate based on the control signals, and generate output data; and a control signal generation unit configured to generate sets of the control signals based on an input number of a test signal.