Abstract:
A relative position detection method detecting a position of a light-emitting member relative to a lens array or a position of the lens array relative to the light-emitting member, in which the light-emitting member includes light-emitting elements arranged in a first direction and the lens array includes lenses arranged in the first direction and condenses light from the light-emitting elements to image positions of the light-emitting elements, optical axes of the lenses being orthogonal to the first direction. The method includes: causing the light-emitting elements to emit light; detecting, at a position displaced from the image positions along an optical axis direction, optical intensity distribution of light emitted from the light-emitting elements and transmitted through the lens array; and detecting a position of the light-emitting member relative to the lens array or a position of the lens array relative to the light-emitting member with use of the optical intensity distribution.
Abstract:
An optical writing device having; a plurality of light-emitting points; a plurality of drive circuits for supplying drive currents to the plurality of light-emitting points respectively; a photodetector for outputting signals indicating quantities of light entering thereto from the respective light-emitting points; a gain switch circuit for outputting photodetection signals obtained by amplifying the signals output from the photodetector in regard to the respective light-emitting points with gains preset for the respective light-emitting points; and a control circuit for controlling the drive circuits such that the photodetection signals output from the gain switch circuit in regard to the respective light-emitting points coincide with a value substantially equal to a predetermined reference value. The gains for the respective light-emitting points are preset based on the distances between the photodetector and the respective light-emitting points.
Abstract:
An optical writing device for forming an electrostatic latent image on a photoreceptor by exposing the photoreceptor to light modulated in accordance with image data. The optical writing device has: a substrate; a light-emitting-element array including a plurality of light-emitting elements supported by the substrate to be arranged in a main-scanning direction; and a light-receiving-element array substantially in parallel to the light-emitting-element array, the light-receiving-element array including a plurality of light-receiving elements supported by the substrate to be arranged in the main-scanning direction. For light-quantity measurement of one of the light-emitting elements, at least an output value output from one of the light-receiving elements of which center is located in a different position, with respect to the main-scanning direction, from a center of the one of the light-emitting elements is used.
Abstract:
An optical writing device having; a plurality of light-emitting points; a photodiode configured to output a signal which represents a quantity of incident light from a predetermined light-emitting point selected from the plurality of light-emitting points; and a calculation section for calculating a temperature of the photodiode based on a magnitude of a photodiode dark current included in the signal output from the photodiode while the predetermined light-emitting point is OFF.
Abstract:
An optical scanning device that scans a photoreceptor with light, the device includes: a light emitter that emits light according to a supply current amount; a source-side optical system that includes an optical element corresponding to the light emitter, the optical element transmitting and shaping the light emitted from the corresponding light emitter; a polygon mirror that cyclically deflects the light shaped by the source-side optical system; an image-side optical system that condenses the light deflected by the polygon mirror on a surface of the photoreceptor; a motor that rotates the polygon mirror; and a light source controller that: monitors a temperature of the optical element; and adjusts the supply current amount for the light emitter or adjusts the temperature of the optical element corresponding to the light emitter to make a temperature difference between the light emitter and the corresponding optical element fall within an allowable range.
Abstract:
An optical print head that performs optical writing to a photoreceptor includes: a light transmissive substrate; a light emitting unit including light emitting element groups, each of which includes two or more light emitting elements disposed on a first main surface of the substrate; a lens array including lenses that correspond one-to-one to the light emitting element groups; light detection units disposed above the second main surface of the substrate in one-to-one correspondence to the light emitting element groups and that detects the light from each of the light emitting elements; and correction unit that corrects light amounts of the light emitting elements of the light emitting element group based on detection of the light detection units.
Abstract:
A relative position detection method detecting a position of a light-emitting member relative to a lens array or a position of the lens array relative to the light-emitting member, in which the light-emitting member includes light-emitting elements arranged in a first direction and the lens array includes lenses arranged in the first direction and condenses light from the light-emitting elements to image positions of the light-emitting elements, optical axes of the lenses being orthogonal to the first direction. The method includes: causing the light-emitting elements to emit light; detecting, at a position displaced from the image positions along an optical axis direction, optical intensity distribution of light emitted from the light-emitting elements and transmitted through the lens array; and detecting a position of the light-emitting member relative to the lens array or a position of the lens array relative to the light-emitting member with use of the optical intensity distribution.
Abstract:
A print head for writing data onto a photoreceptor, including a light source panel of light emitting elements arranged in a matrix, optical systems arranged in a matching matrix, light receiving elements, and a corrector. The optical systems each include at least a light-source-side lens and an image-side lens, and focus light from the light emitting elements onto different regions of the photoreceptor. The light receiving elements each include a light receiving surface disposed in a leaked light region and detect light incident on the light receiving surface. The leaked light region is in a gap between the light-source-side lens and the image-side lens of each of the optical systems occupied by optical paths of light transmitted through the light-source-side lenses but not incident on the image-side lenses. The corrector corrects amounts of light to be emitted from the light emitting elements based on the light detected.
Abstract:
An optical writing device includes a plurality of current driven light emitting elements, first and second power source lines, a designation circuit that outputs a designation potential, first driving circuits provided for each of the light emitting elements to supply driving current to the corresponding light emitting element, second driving circuits provided for each of the light emitting elements to supply driving current to the corresponding light emitting element, and a switching control unit that alternately switches respective states of the first and second driving circuits between a state where one of the first and second driving circuits receives the designation potential while the other driving circuit supplies the driving current, and a state where the other driving circuit receives the designation potential while the one driving circuit supplies the driving current.
Abstract:
Optical print head includes: light-emitting elements connected one-to-one to current supply lines branching from first power line at different positions in longitudinal direction; holding elements; signal writing unit writing luminance signal into each holding element, the luminance signal being represented by voltage indicating light emission amount of corresponding light-emitting element; second power line supplying reference voltage to each holding element, the reference voltage being reference when signal writing unit writes luminance signal into holding element; and driving drivers corresponding one-to-one with current supply lines and controlling current supplied to corresponding current supply line from first power line, in accordance with voltage held in corresponding holding element when signal writing unit has written luminance signal into corresponding holding element, wherein power source supplying the reference voltage to second power line is common with power source supplying voltage to signal output subunit outputting luminance signal.