Abstract:
An optical print head includes: light-emitting elements in line shape; first power line supplying first reference voltage; second power line supplying drive current to each light-emitting element and supplying second reference voltage; DAC outputting first voltage indicating light emission amount of each light-emitting element; first elements for holding first voltage difference between the first reference voltage and the first voltage; second elements each electrically connectable with corresponding first element and for holding second voltage difference between the second reference voltage and second voltage according to the first voltage, and during supply of drive current, controls each first element to hold the first difference by electrically disconnecting the first and second elements, and temporarily suspends supply of the drive current, and controls the second element to hold the second difference by electrically connecting the first and second elements, such that the drive current according to the second voltage difference is supplied.
Abstract:
An image processing device that communicates with a first server and a second server includes a main controller and a power controller. The main controller establishes a connection that enables communication with the first and second servers, establishes a periodic communication with the first and second servers to maintain the connection, manages a first time interval between the periodic communication with the first server, manages a second time interval between the periodic communication with the second server, and changes one or both of the first time interval and the second time interval. The power controller stops and starts power supply to the main controller.
Abstract:
An optical writing device having; a plurality of light-emitting points; a plurality of drive circuits for supplying drive currents to the plurality of light-emitting points respectively; a photodetector for outputting signals indicating quantities of light entering thereto from the respective light-emitting points; a gain switch circuit for outputting photodetection signals obtained by amplifying the signals output from the photodetector in regard to the respective light-emitting points with gains preset for the respective light-emitting points; and a control circuit for controlling the drive circuits such that the photodetection signals output from the gain switch circuit in regard to the respective light-emitting points coincide with a value substantially equal to a predetermined reference value. The gains for the respective light-emitting points are preset based on the distances between the photodetector and the respective light-emitting points.
Abstract:
An optical writing device for forming an electrostatic latent image on a photoreceptor by exposing the photoreceptor to light modulated in accordance with image data. The optical writing device has: a substrate; a light-emitting-element array including a plurality of light-emitting elements supported by the substrate to be arranged in a main-scanning direction; and a light-receiving-element array substantially in parallel to the light-emitting-element array, the light-receiving-element array including a plurality of light-receiving elements supported by the substrate to be arranged in the main-scanning direction. For light-quantity measurement of one of the light-emitting elements, at least an output value output from one of the light-receiving elements of which center is located in a different position, with respect to the main-scanning direction, from a center of the one of the light-emitting elements is used.
Abstract:
An optical writing device having; a plurality of light-emitting points; a photodiode configured to output a signal which represents a quantity of incident light from a predetermined light-emitting point selected from the plurality of light-emitting points; and a calculation section for calculating a temperature of the photodiode based on a magnitude of a photodiode dark current included in the signal output from the photodiode while the predetermined light-emitting point is OFF.
Abstract:
A device for measuring two-dimensional flicker of the present application includes a plurality of two-dimensional sensors having a partial readout function of reading out only a pixel value of some of photoelectric conversion elements included in set partial readout regions, among a plurality of photoelectric conversion elements. In the device for measuring two-dimensional flicker, a plurality of measurement regions are set two-dimensionally on a measurement target object. Each pixel in the plurality of measurement regions is individually acquired, by setting each of the plurality of partial readout regions of the plurality of two-dimensional sensors in each of a plurality of partial imaging regions obtained by dividing an entire imaging region including entirely the measurement target object. A flicker value of the plurality of measurement regions is individually obtained based on each pixel value in the plurality of measurement regions.
Abstract:
An image processing device that communicates with a first server and a second server includes a main controller and a power controller. The main controller establishes a connection that enables communication with the first and second servers, establishes a periodic communication with the first and second servers to maintain the connection, manages a first time interval between the periodic communication with the first server, manages a second time interval between the periodic communication with the second server, and changes one or both of the first time interval and the second time interval. The power controller stops and starts power supply to the main controller.
Abstract:
An optical writing device includes a plurality of current driven light emitting elements, first and second power source lines, a designation circuit that outputs a designation potential, first driving circuits provided for each of the light emitting elements to supply driving current to the corresponding light emitting element, second driving circuits provided for each of the light emitting elements to supply driving current to the corresponding light emitting element, and a switching control unit that alternately switches respective states of the first and second driving circuits between a state where one of the first and second driving circuits receives the designation potential while the other driving circuit supplies the driving current, and a state where the other driving circuit receives the designation potential while the one driving circuit supplies the driving current.
Abstract:
A communication system includes a plurality of communication relay apparatuses relaying communication between the plurality of devices provided inside a LAN and an external server provided outside the LAN. A first communication relay apparatus performs a device search process of searching the LAN for a device, acquires information on a first management target device which is a device whose communication relay process is managed by a second communication relay apparatus, and determines a second management target device which is a device whose communication relay process is managed by the first communication relay apparatus. The first communication relay apparatus determines the second management target device after removing at least partial duplication of the second management target device and the first management target device, by excluding at least some of the first management target device from two or more devices which are retrieved in the device search process.
Abstract:
Optical print head includes: light-emitting elements connected one-to-one to current supply lines branching from first power line at different positions in longitudinal direction; holding elements; signal writing unit writing luminance signal into each holding element, the luminance signal being represented by voltage indicating light emission amount of corresponding light-emitting element; second power line supplying reference voltage to each holding element, the reference voltage being reference when signal writing unit writes luminance signal into holding element; and driving drivers corresponding one-to-one with current supply lines and controlling current supplied to corresponding current supply line from first power line, in accordance with voltage held in corresponding holding element when signal writing unit has written luminance signal into corresponding holding element, wherein power source supplying the reference voltage to second power line is common with power source supplying voltage to signal output subunit outputting luminance signal.