Abstract:
An optical print head including light emitting elements, drivers, setters, a detector, and a generator. The detector is for detecting a noise component superimposed on a luminance signal, on transmission circuitry for transmitting the luminance signal from a setter to a driver, in a state in which the setter is outputting the luminance signal. The generator, for each light emitting element due to emit light in a line subsequent to a line for which the detector detected the noise component, generates and causes a setter corresponding to the light emitting element to output an adjusted luminance signal such that the light emitting element emits a light emission amount according to image data in a state in which the noise component detected by the detector is superimposed on the adjusted luminance signal.
Abstract:
An optical print head includes: light-emitting elements in line shape; first power line supplying first reference voltage; second power line supplying drive current to each light-emitting element and supplying second reference voltage; DAC outputting first voltage indicating light emission amount of each light-emitting element; first elements for holding first voltage difference between the first reference voltage and the first voltage; second elements each electrically connectable with corresponding first element and for holding second voltage difference between the second reference voltage and second voltage according to the first voltage, and during supply of drive current, controls each first element to hold the first difference by electrically disconnecting the first and second elements, and temporarily suspends supply of the drive current, and controls the second element to hold the second difference by electrically connecting the first and second elements, such that the drive current according to the second voltage difference is supplied.
Abstract:
A focus adjusting tool used to perform an initial setting for a pair of autofocus eyeglasses includes an adjusting lens that refracts reflected light from a visual object, a housing including an inner space that allows a parallel movement of the adjusting lens, an adjusting unit that adjusts a position of the adjusting lens inside the housing, and a first end and a second end in a moving direction of the adjusting lens. The first end is provided with a hole for visually observing a visual object through a power variable lens of the pair of autofocus eyeglasses. The adjusting lens adjusts, in response to the position thereof inside the housing, an incident angle of the reflected light from the visual object into the power variable lens, the visual object being located on the side of the second end.
Abstract:
An optical writing device having; a plurality of light-emitting points; a photodiode configured to output a signal which represents a quantity of incident light from a predetermined light-emitting point selected from the plurality of light-emitting points; and a calculation section for calculating a temperature of the photodiode based on a magnitude of a photodiode dark current included in the signal output from the photodiode while the predetermined light-emitting point is OFF.
Abstract:
An optical print head including light emitting elements, drivers, setters, a detector, and a generator. The detector is for detecting a noise component superimposed on a luminance signal, on transmission circuitry for transmitting the luminance signal from a setter to a driver, in a state in which the setter is outputting the luminance signal. The generator, for each light emitting element due to emit light in a line subsequent to a line for which the detector detected the noise component, generates and causes a setter corresponding to the light emitting element to output an adjusted luminance signal such that the light emitting element emits a light emission amount according to image data in a state in which the noise component detected by the detector is to superimposed on the adjusted luminance signal.
Abstract:
An optical writing device includes a plurality of current driven light emitting elements, first and second power source lines, a designation circuit that outputs a designation potential, first driving circuits provided for each of the light emitting elements to supply driving current to the corresponding light emitting element, second driving circuits provided for each of the light emitting elements to supply driving current to the corresponding light emitting element, and a switching control unit that alternately switches respective states of the first and second driving circuits between a state where one of the first and second driving circuits receives the designation potential while the other driving circuit supplies the driving current, and a state where the other driving circuit receives the designation potential while the one driving circuit supplies the driving current.
Abstract:
Optical print head includes: light-emitting elements connected one-to-one to current supply lines branching from first power line at different positions in longitudinal direction; holding elements; signal writing unit writing luminance signal into each holding element, the luminance signal being represented by voltage indicating light emission amount of corresponding light-emitting element; second power line supplying reference voltage to each holding element, the reference voltage being reference when signal writing unit writes luminance signal into holding element; and driving drivers corresponding one-to-one with current supply lines and controlling current supplied to corresponding current supply line from first power line, in accordance with voltage held in corresponding holding element when signal writing unit has written luminance signal into corresponding holding element, wherein power source supplying the reference voltage to second power line is common with power source supplying voltage to signal output subunit outputting luminance signal.
Abstract:
A light-emitting element having a light-emitting section and a light-receiving section provided on a substrate. The light-emitting section includes: an organic compound in which light is emitted; a translucent reflecting portion that transmits the emitted light which has spectral radiance changeable with changes in ambient temperature; and a transparent portion that radiates first part of the light coming through the translucent reflecting portion to outside and total-reflects second part that is light incident to a boundary surface therebetween at angles larger than a critical angle. Wherein, the light-receiving section is capable of receiving the light total-reflected at the boundary surface, the received light having a quantity of light changeable with changes in wavelength of the light passing through the translucent reflecting portion. The light-receiving section further outputs a signal which has an amplitude level in correlation to the quantity of light.
Abstract:
An image forming system conveys a recording medium to form an image. The image forming system includes: a driver to drive an operation mechanism to convey a recording medium or an operation mechanism to form an image on the recording medium; a detector that detects a driving state of the driver; a diagnostic section diagnosing an abnormality of the operation mechanism based on a load obtained by converting a detection result by the detector based on a predetermined conversion condition; and an updater that, when at least one of components of the driver is replaced, updates the conversion condition in accordance with the replaced component.
Abstract:
A print head includes: current-driven non-single crystal light emitting elements arranged in a line; thin film transistors that are provided in one-to-one correspondence with the light emitting elements and each supplies a driving current to a corresponding one of the light emitting elements; a detector that detects, when one of the light emitting elements corresponding to one of the thin film transistors emits light, an output voltage of the one of the thin film transistors; and a hardware processor that determines a control voltage to be applied to each of the thin film transistors when next light is emitted according to the output voltage of the one of the thin film transistors detected by the detector and a driving current to be supplied by each of the thin film transistors to cause each of the light emitting elements to emit light with a target light amount.