Abstract:
Provided is a method for preparing a catalyst for a dehydrogenation reaction of formate and a hydrogenation reaction of bicarbonate, the method including: adding a silica colloid to a polymerization step of polymerizing aniline and reacting the resulting mixture to form a poly(silica-aniline) composite; carbonizing the corresponding poly(silica-aniline) composite under an atmosphere of an inert gas; removing silica particles from the corresponding poly(silica-aniline) composite to form a polyaniline-based porous carbon support; and fixing palladium particles on the corresponding polyaniline-based porous carbon support to prepare the catalyst.
Abstract:
An anode for a molten carbonate fuel cell (MCFC) having improved creep property by adding CeO2 and/or Cr for imparting creep resistance to nickel-aluminum alloy and nickel as materials for an anode is provided. Improved sintering property, creep property and increased mechanical strength of a molten carbonate fuel cell may be obtained accordingly.
Abstract:
Provided is a method for preparing a catalyst for a dehydrogenation reaction of formate and a hydrogenation reaction of bicarbonate, the method including: adding a silica colloid to a polymerization step of polymerizing aniline and reacting the resulting mixture to form a poly(silica-aniline) composite; carbonizing the corresponding poly(silica-aniline) composite under an atmosphere of an inert gas; removing silica particles from the corresponding poly(silica-aniline) composite to form a polyaniline-based porous carbon support; and fixing palladium particles on the corresponding polyaniline-based porous carbon support to prepare the catalyst.
Abstract:
Disclosed is a homogeneous catalyst having a single phase of Perovskite oxide, wherein at least one doping element is substituted at site A, site B or sites A and B in ABO3 Perovskite type oxide so that the wettability with a liquid molten carbonate electrolyte may be decreased. The catalyst may have high catalytic activity, inhibit catalyst poisoning caused by creepage and evaporation of a liquid molten carbonate electrolyte, maintain high reaction activity for a long time, provide high methane conversion, and allow production of synthetic gas having a high proportion of hydrogen.
Abstract:
A polymer electrolyte membrane fuel cell is provided. The polymer electrolyte membrane fuel cell includes a phosphoric acid-doped polyimidazole electrolyte membrane and a complex catalyst. In the complex catalyst, an alloy or mixture of a metal and a chalcogen element is supported on a carbon carrier. The polymer electrolyte membrane fuel cell exhibits further improved long-term operation, power generation efficiency, and operational stability at high temperature. The complex catalyst can be produced by a simple method.
Abstract:
Provided is a method for preparing nickel-aluminum alloy powder at low temperature, which is simple and economical and is capable of solving the reactor corrosion problem. The method for preparing nickel-aluminum alloy powder at low temperature includes: preparing a powder mixture by mixing nickel powder and aluminum powder in a reactor and adding aluminum chloride into the reactor (S1); vacuumizing the inside of the reactor and sealing the reactor (S2); and preparing nickel-aluminum alloy powder by heat-treating the powder mixture in the sealed reactor at low temperature (S3).