Abstract:
Disclosed is an electrochemical reaction cell enhancing a reduction reaction. The electrochemical reaction cell enhancing a reduction reaction comprises: a membrane electrode assembly including a polymer electrolytic membrane, a cathode formed by sequentially stacking a first gas diffusion layer and a first catalyst layer on one surface of the electrolytic membrane, and an anode formed by sequentially stacking a second catalyst layer and a second gas diffusion layer on the other surface of the electrolytic membrane; a first distribution plate stacked on the first catalyst layer to supply a reaction gas and a cathode electrolytic solution dissolved with the reaction gas to the first catalyst layer along separate channels; and a second distribution plate stacked on the second gas diffusion layer to supply an anode electrolytic solution to the second gas diffusion layer.
Abstract:
Provided is a catalyst for an oxygen reduction reaction, including an alloy in which two metals are mixed, in which the corresponding alloy is an alloy of iridium (Ir); and silicon (Si), phosphorus (P), germanium (Ge), or arsenic (As). The corresponding catalyst for the oxygen reduction reaction may have excellent price competitiveness while exhibiting a catalytic activity which is equal to or similar to that of an existing Pt catalyst. Accordingly, when the catalyst is used, the amount of platinum catalyst having low price competitiveness may be reduced, so that a production unit cost of a system to which the corresponding catalyst is applied may be lowered.
Abstract:
A polybenzimidazole based polymer in which substituted or non-substituted benzyl groups are introduced to the two nitrogen atoms of benzimidazole ring. The benzimidazole ring is not decomposed by the attack of hydroxide ions but shows excellent alkali resistance, and thus maintains high ion conductivity. The polybenzimidazole based polymers are particularly useful for not only solid alkali exchange membrane fuel cells (SAEMFC) but also various industrial fields in which polybenzimidazole based polymers are used.
Abstract:
Provided are cardo copolybenzimidazoles, a gas separation membrane using the same and a method for preparing the same. More particularly, provided are cardo copolybenzimidazoles obtained by introducing cardo groups and aromatic ether groups to a polybenzimidazole backbone, a gas separation membrane having significantly improved oxygen permeability by using the same, and a method for preparing the same. The cardo copolybenzimidazoles have improved solubility as compared to the polybenzimidazole polymers according to the related art, show excellent mechanical properties while maintaining thermal stability so as to be formed into a film shape, and provide a gas separation membrane having significantly improved gas permeability, particularly, oxygen permeability.
Abstract:
Disclosed is an antioxidant for a polymer electrolyte membrane of a fuel cell including cerium hydrogen phosphate (CeHPO4). The presence of cerium hydrogen phosphate in the antioxidant enhances the dissolution stability of cerium and improves the ability to capture water, leading to an increase in proton conductivity. In addition, the cerium hydrogen phosphate has a crystal structure composed of smaller cerium particles. This crystal structure greatly improves the ability of the antioxidant to prevent oxidation of the electrolyte membrane. Also disclosed are an electrolyte membrane including the antioxidant, a fuel cell including the electrolyte membrane, a method for preparing the antioxidant, a method for producing the electrolyte membrane, and a method for fabricating the fuel cell.
Abstract:
A method is disclosed for preparing a metal single-atom catalyst for a fuel cell including the steps of depositing metal single atoms to a nitrogen precursor powder, mixing the metal single atom-deposited nitrogen precursor powder with a carbonaceous support, and carrying out heat treatment. The step of depositing metal single atoms is carried out by sputtering, thermal evaporation, E-beam evaporation or atomic layer deposition. The method uses a relatively lower amount of chemical substances as compared to conventional methods, is eco-friendly, and can produce a single-atom catalyst at low cost. In addition, unlike conventional methods which are limited to certain metallic materials, the present method can be applied regardless of the type of metal.
Abstract:
Disclosed is a method for preparing a carbon-supported platinum-transition metal alloy nanoparticle catalyst using a stabilizer. According to the method, the transition metal on the nanoparticle surface and the stabilizer are simultaneously removed by treatment with acetic acid. Therefore, the method enables the preparation of a carbon-supported platinum-transition metal alloy nanoparticle catalyst in a simple and environmentally friendly manner compared to conventional methods. The carbon-supported platinum-transition metal alloy nanoparticle catalyst can be applied as a high-performance, highly durable fuel cell catalyst.
Abstract:
The present disclosure relates to an IrO2 electrodeposited porous titanium composite layer of a polymer electrolyte membrane water electrolysis apparatus serving as both a diffusion layer and an oxygen electrode, the apparatus including: a porous titanium (Ti) layer; and an electrodeposited iridium oxide (IrO2) layer on the porous Ti layer. The IrO2 layer may be uniformly deposited on a porous Ti layer through an electrolysis process, and the electrodeposited IrO2 layer may play multiple roles as not only a catalyst layer toward oxygen evolution reaction (OER) on the surface of the Ti layer, but also a corrosion-protection layer which prevents an inner Ti layer from corrosion.
Abstract:
Disclosed is a method for preparing a carbon-supported metal oxide and/or alloy nanoparticle catalyst. According to the method, a carbon-supported metal oxide and/or alloy nanoparticle catalyst is prepared by depositing metal oxide and/or alloy nanoparticles on a water-soluble support and dissolving the metal oxide and/or alloy nanoparticles deposited on the water-soluble support in an anhydrous polar solvent containing carbon dispersed therein to support the metal oxide and/or alloy nanoparticles on the carbon. The anhydrous polar solvent has much lower solubility for the water-soluble support than water and is used to dissolve the water-soluble support. The use of the anhydrous polar solvent instead of water can prevent the water-soluble support present at a low concentration in the solution from impeding the support of the nanoparticles on the carbon, thus providing a solution to the problems of environmental pollution, high cost, and complexity encountered in conventional chemical and physical synthetic methods.
Abstract:
A catalyst containing a carbon support and a core-shell nanoparticle supported on the carbon support, wherein a core of the core-shell nanoparticle is cobalt metal not containing a heterogeneous element and the shell contains carbon. The catalyst for an oxygen reduction reaction of the present disclosure is a catalyst in which the cobalt core-carbon shell nanoparticle is supported on the carbon support through ligand stabilization and heat treatment. The catalyst can be synthesized to have high dispersibility. In particular, it can be used as an electrode catalyst of a cathode to improve the oxygen reduction activity and durability of a fuel cell operating under an alkaline atmosphere.