Abstract:
An embodiment includes a method of texturing a semiconductor substrate, a semiconductor substrate manufactured using the method, and a solar cell including the semiconductor substrate, the method including: forming metal nanoparticles on a semiconductor substrate, primarily etching the semiconductor substrate, removing the metal nanoparticles, and secondarily etching the primarily etched semiconductor substrate to form nanostructures.
Abstract:
Provided is a see-through thin film solar cell module including a transparent substrate, a first back electrode deposited on a first surface of the transparent substrate, a second back electrode deposited on the first back electrode and including a MoSe2 layer, an absorber layer deposited on the second back electrode and including selenium (Se) or sulfur (S), and a laser scribing pattern formed by partially removing the absorber layer.
Abstract:
Provided is a multi-junction solar cell in which two or more absorption layers having different bandgaps are stacked on one another. The multi-junction solar cell includes a first cell including a first absorption layer, and a second cell electrically connected in series onto the first cell, wherein the second cell includes a second absorption layer having a higher bandgap compared to the first absorption layer, and a plurality of recesses penetrating through the second absorption layer.
Abstract:
An exemplary embodiment relates to a nano-color coating layer and a method of forming the same, and more particularly, to a color structure representing a back side-reflection color with metallic luster and high chroma when observed in a substrate incident mode by greatly enhancing light absorbance at a specific wavelength using a resonance structure in which a light absorbing material is inserted between a transparent substrate and an upper mirror layer. In addition, the exemplary embodiment provides a color structure which controls metallic luster and texture of a high-chroma color from gloss-semi-gloss-matte texture in various ways by introducing a haze surface structure in which light scattering occurs on at least one surface of the transparent substrate.
Abstract:
A plasmonic nano-color coating layer includes a composite layer including a plurality of metal particle layers and a plurality of matrix layers and having a periodic multilayer structure in which the metal particle layers and the matrix layers are alternately arranged, a dielectric buffer layer located below the composite layer, and a mirror layer located below the dielectric buffer layer, wherein the color of the plasmonic nano-color coating layer is determined based on a nominal thickness of the metal particle layer and a separation between the metal particle layers.