Abstract:
Provided is a method of fabricating a see-through thin film solar cell, the method including preparing a substrate including a molybdenum (Mo) layer on one surface, forming see-through patterns by selectively removing at least parts of the Mo layer, sequentially depositing a chalcogenide absorber layer, a buffer layer, and a transparent electrode layer on the substrate and the Mo layer including the see-through patterns, and forming a see-through array according to a shape of the see-through patterns by removing the chalcogenide absorber layer, the buffer layer, and the transparent electrode layer deposited on the see-through patterns, by irradiating a laser beam from under the substrate toward the transparent electrode layer.
Abstract:
An embodiment includes a method of texturing a semiconductor substrate, a semiconductor substrate manufactured using the method, and a solar cell including the semiconductor substrate, the method including: forming metal nanoparticles on a semiconductor substrate, primarily etching the semiconductor substrate, removing the metal nanoparticles, and secondarily etching the primarily etched semiconductor substrate to form nanostructures.
Abstract:
2-dimensional nanostructured tungsten carbide which is obtained by control of the alignment of nanostructure during growth of tungsten carbide through control of the degree of supersaturation and a method for fabricating same are disclosed. The method for fabricating 2-dimensional nanostructured tungsten carbide employs a chemical vapor deposition process wherein a hydrogen plasma is applied to prepare 2-dimensional nanostructured tungsten carbide vertically aligned on a nanocrystalline diamond film. The chemical vapor deposition process wherein the hydrogen plasma is applied includes: disposing a substrate with the nanocrystalline diamond film formed thereon on an anode in a chamber, disposing a surface-carburized tungsten cathode above and at a distance from the substrate, and applying the hydrogen plasma into the chamber.
Abstract:
Provided is a multi-junction solar cell in which two or more absorption layers having different bandgaps are stacked on one another. The multi-junction solar cell includes a first cell including a first absorption layer, and a second cell electrically connected in series onto the first cell, wherein the second cell includes a second absorption layer having a higher bandgap compared to the first absorption layer, and a plurality of recesses penetrating through the second absorption layer.
Abstract:
An embodiment includes a method of texturing a semiconductor substrate, a semiconductor substrate manufactured using the method, and a solar cell including the semiconductor substrate, the method including: forming metal nanoparticles on a semiconductor substrate, primarily etching the semiconductor substrate, removing the metal nanoparticles, and secondarily etching the primarily etched semiconductor substrate to form nanostructures.
Abstract:
Provided is a multi-junction solar cell in which two or more absorption layers having different bandgaps are stacked on one another. The multi-junction solar cell includes a first cell including a first absorption layer, and a second cell electrically connected in series onto the first cell, wherein the second cell includes a second absorption layer having a higher bandgap compared to the first absorption layer, and a plurality of recesses penetrating through the second absorption layer.
Abstract:
Methods for fabricating uniform nanocrystalline diamond thin films with minimized voids are presented. These uniform nanocrystalline diamond thin films can be formed on any number of treated silicon oxide surfaces such as on hydrogen plasma treated surfaces of silicon oxide-coated substrates or on hydrocarbon plasma pre-treated surfaces of silicon oxide-coated substrates. It is believed that treating these surfaces results in maximizing electrostatic attraction between these treated surfaces with nanodiamond particles during a subsequent ultrasonic seeding of the nanodiamond particles onto these threated surfaces. This can result in the nanodiamond particles being substantially uniformly distributed and bound on the treated silicon oxide surface.
Abstract:
A method for producing a cubic boron nitride (cBN) thin film includes depositing cBN onto nanocrystalline diamond having controlled surface irregularity characteristics to improve the adhesion at the interface of cBN/nanocrystalline diamond, while incorporating hydrogen to a reaction gas upon the synthesis of cBN and controlling the feed time of hydrogen, so that harmful reactions occurring on a surface of nanocrystalline diamond and residual stress applied to cBN may be inhibited. Also, a cBN thin film structure is obtained by the method. The cBN thin film is formed on the nanocrystalline diamond thin film by using a physical vapor deposition process, wherein a reaction gas supplied when the deposition of a thin film occurs is a mixed gas of argon (Ar) with nitrogen (N2), and hydrogen (H2) is added to the reaction gas at a time after the deposition of a thin film occurs.