摘要:
A method of setting an almost blank subframe (ABS) duty cycle in a heterogeneous network including a macro cell and one or more small cells, the one or more small cells being underlaid with respect to the macro cell includes obtaining, at a network element, loading information corresponding to each of the macro cell and the one or more small cells, the loading information including, for each of the macro cell and the one or more small cells, an indication of an amount of information buffered at the cell for each user attached to the cell; and determining the ABS duty cycle based on the obtained loading information.
摘要:
In one embodiment, the method of allocating network resources by a base station of a network includes allocating at least two blocks of an uplink channel of the network to a direct communication link between a first user equipment (UE) and a second UE. The method further includes determining that a rate of data transfer on the direct communication link is greater than a rate of data transfer for uplink communications between one of (i) the first UE and base station and (ii) the second UE and the base station. The method further includes re-allocating, based on the determining, at least one of the at least two uplink blocks allocated to the direct communication link to at least one of uplink communications by the first UE, the second UE, or other UEs with the base station.
摘要:
A method is provided a wireless system for optimizing network throughput in a wireless communication system. More particularly, the methodology of the invention evaluates the both individual user data throughput as well as the data throughput of a larger user population, in determining the base station to which a user should attach when entering the wireless system. In an alternate embodiment, the invention methodology evaluates such individual user data throughput and the user population throughput in determining whether or not to handoff a data session for a user from one base station to the other.
摘要:
Disclosed are embodiments that provide a transportation environment data service. The transportation environmental data service includes harvesting services that crawl roadside infrastructure solutions to obtain sensor data collected from sensors physically positioned at the roadside infrastructure. In some cases, the roadside infrastructure solutions perform additional processing on the sensor data. For example, some roadside infrastructure performs object detection and/or object recognition. When encountering these solutions, the edge or harvesting service also collects the object detection and/or object recognition information. Customers can subscribe to various data services provided by the transportation environment data service. For example, some subscribers indicate an interest in any updates of environmental data for a particular region. Other subscribers are interested in video data associated with any vehicular accidents detected by the transportation environment data service.
摘要:
Systems and techniques for mission critical (MC) push notification mechanism in a high-reliability (HR) information centric network (ICN) are described herein. For example, a node may test network links to other nodes to classify the other nodes into proximate nodes and non-proximate nodes based on a reception metric. The node may then elect a set of leader nodes from the proximate nodes. Here, the set of leader nodes are selected based on link quality between respective leader nodes and non-proximate nodes. The node may detect an MC event and create an ICN data packet that contains data from the MC event. The node may then transmit the ICN data packet to the set of leader nodes that then relay the ICN data packet to the non-proximate nodes.
摘要:
Embodiments of apparatus and methods for signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul are generally described herein. In some embodiments, User Equipment configured for reporting a channel quality indicator (CQI) index in a channel state information (CSI) reference resource assumes a physical resource block (PRB) bundling size of two PRBs to derive the CQI index.
摘要:
Systems, apparatuses and methods may provide for infrastructure node technology that conducts a mutual authentication with a vehicle and verifies, if the mutual authentication is successful, location information received from the vehicle. The infrastructure node technology may also send a token to the vehicle if the location information is verified, wherein the token includes an attestation that the vehicle was present in a location associated with the location information at a specified moment in time. Additionally, vehicle technology may conduct a mutual authentication with an infrastructure node and send, if the mutual authentication is successful, location information to the infrastructure node. The vehicle technology may also receive a token from the infrastructure node.
摘要:
An apparatus and method for cooperative maximal ratio transmission in a BWA communication system are provided, in which a BS transmits a signal directed to a user terminal to an RS in a first time slot, the RS transmits the signal received from the BS to the user terminal in a second time slot, and the user terminal receives the signal from the RS.
摘要:
A hybrid forwarding apparatus and method for cooperative relaying in an OFDM network are provided. In a hybrid forwarding apparatus in a relay terminal, a forwarding scheme selector selects a forwarding scheme for transmission. An amplify and forward (AF) block amplifies data received from the forwarding scheme selector, if an AF scheme is selected. A decode and forward (DF) block decodes and encodes data received from the forwarding scheme selector, if a DF scheme is selected. A multiplexer provides the output data of the AF block and the DF block to an OFDM modulator.
摘要:
Systems and techniques for mobility-as-a-service for user experience are described herein. An orchestration log may be maintained that includes current orchestration data. An orchestration backup record may be generated that includes alternate MaaS nodes on the MaaS network. It may be determined that connectivity is lost to a first orchestration container hosted by a first MaaS node. An orchestration container is generated using the orchestration log to maintain orchestration functionality. An available second MaaS node is identified from the alternate MaaS nodes. The orchestration container may be transferred to the second MaaS node.