摘要:
The drawing method of the present invention uses a drawing furnace comprising a furnace muffle tube, a furnace body and a heater. According to the method, an optical fiber preform is inserted from the inlet of the furnace muffle tube, the optical fiber preform is melted by means of a heater, under a specified gas atmosphere, and is drawn toward the outlet of the furnace muffle tube by means of a specified drawing tension. The optical fiber preform and the drawing furnace used in this method both satisfy the condition of below-indicated formula (1): L/D≧8 (1) wherein L indicates the length of the furnace body in the drawing direction and D indicates the diameter of the optical fiber preform. Through this method, even for the case of drawing optical fibers having a large relative index difference between the central core and the cladding, optical fibers wherein residual amounts of lattice defects are sufficiently reduced and degradation of characteristics under a hydrogen atmosphere is sufficiently suppressed can be obtained efficiently and at low cost.
摘要:
A furnace for drawing an optical fiber provided with a muffle tube (10) and inner tubes (5,5′) connected to the upper end of the core tube, wherein a preform (1) supported by a dummy rod (2) at the upper part thereof is disposed inside the muffle tube (10) and inner tubes (5,5′) so as to be movable downward together with dummy rod (2), the preform (1) is heated and melted by a heater (11) from the outside of the muffle tube (10) and an optical fiber (1a) is pulled out from the lower end of the preform (1); the furnace is further provided with one or a plurality of sets of separating plates (4, 17) adapted to partition a space in the inner tubes (5,5′) above the preform (1) into a plurality of portions in the advance direction of the preform and disposed in the space, and with gas blowing inlets (8) disposed in the parts of wall surfaces of the inner tubes (5,5′) which are below the separating plates (4, 17) and adapted to blow an inert gas into the inner tubes (5,5′) and the muffle tube (10), thereby preventing variations in diameter of the optical fiber (1a).
摘要:
A furnace for drawing an optical fiber provided with a muffle tube (10) and inner tubes (5,5′) connected to the upper end of the core tube, wherein a preform (1) supported by a dummy rod (2) at the upper part thereof is disposed inside the muffle tube (10) and inner tubes (5,5′) so as to be movable downward together with dummy rod (2), the preform (1) is heated and melted by a heater (11) from the outside of the muffle tube (10) and an optical fiber (1a) is pulled out from the lower end of the preform (1); the furnace is further provided with one or a plurality of sets of separating plates (4, 17) adapted to partition a space in the inner tubes (5, 5′) above the preform (1) into a plurality of portions in the advance direction of the preform and disposed in the space, and with gas blowing inlets (8) disposed in the parts of wall surfaces of the inner tubes (5, 5′) which are below the separating plates (4,17) and adapted to blow an inert gas into the inner tubes (5,5′) and the muffle tube (10), thereby preventing variations in diameter of the optical fiber (1a).
摘要:
The amount of dimming components originating in an ultraviolet-curing resin and adhering to a quartz tube is reduced, and a decline in the ultraviolet transmittance is prevented, during ultraviolet-curing of a resin coated on a liner body through an ultraviolet-transmitting tubular member placed inside a curing apparatus and of curing ultraviolet-curing resin by irradiating ultraviolet rays from outside the ultraviolet-transmitting tubular member. Embodiments include coating the inner surface of the ultraviolet-transmitting tubular member with titanium and employing an atmosphere of lover 0.1% oxygen.
摘要:
A transparent glass preform for an optical fiber is produced by heating a glass soot preform to remove gas from the soot preform at a temperature at which the soot preform is not vitrified under reduced pressure, and then heating the preform at a temperature at which the preform is vitrified under reduced pressure, whereby the transparent glass preform containing no or little bubbles and having a uniform outer diameter is produced.
摘要:
A raw material supplying device having a gas tight tank for receiving a material to be gasified by heating; a heater for heating the raw material within the tank and a plurality of pipes for conveying a plurality of streams of gas in parallel to each other to a plurality of ports of a reaction apparatus, and a process for using the raw material supplying device. The raw material supplying device can be used in a system for manufacturing glass fibers in which the ends of the plurality of pipes are connected to the gas feed ports of at least one multi-layer burner.
摘要:
A laser light source includes a light source section for outputting pulse laser light λ1, λ2 with a mutually identical repetition frequency, an optical amplification section for amplifying and outputting the pulse laser light λ1, λ2 output from the above light source section by means of a common optical amplification medium, an optical demultiplexing section for mutually demultiplexing pulse laser light λ1, λ2, an optical multiplexing section for multiplexing and outputting the pulse laser light λ1, λ2 demultiplexed in the above optical demultiplexing section, and an optical path length difference setting section for adjusting an optical path length difference between the pulse laser light λ1, λ2 in between the optical demultiplexing section and the optical multiplexing section.
摘要:
A fiber drawing method according to the present invention is a drawing method of optical fiber for drawing an optical fiber 14 from one end of a fiber preform 13 by softening with heat, wherein the fiber preform 13 is set in a semi-closed space 10, 20 opening in part at a lower end in a fiber drawing furnace, the fiber preform 13 is heated by a heater 15 disposed on the lower end side of this semi-closed space 10, 20, and fiber drawing is carried out with adjusting a quantity of heat dissipation from the upper portion 20 of this semi-closed space.
摘要:
An optical fiber preform 2 having a viscosity ratio R&eegr;=&eegr;0/&eegr;t of 2.5 or less between the core average viscosity &eegr;0 and the total average viscosity &eegr;t is prepared, and is drawn by a drawing furnace 11 so as to yield an optical fiber 3, which is then heated to a temperature within a predetermined range so as to be annealed by a heating furnace 21 disposed downstream the drawing furnace 11. Here, upon annealing in the heating furnace 21, the fictive temperature Tf within the optical fiber lowers, thereby reducing the Rayleigh scattering loss. At the same time, the viscosity ratio condition of R&eegr;≦2.5 restrains the stress from being concentrated into the core, thereby lowering the occurrence of structural asymmetry loss and the like. Hence, an optical fiber which can reduce the transmission loss caused by the Rayleigh scattering loss and the like as a whole, and a method of making the same can be obtained.
摘要:
An ink-jet recording method is disclosed, which comprises the step of jetting a water-based ink on a recording sheet, the recording sheet comprising a support and provided thereon, an ink receiving layer containing a binder, an anionic fluorine-containing surfactant and a cationic fluorine-containing surfactant, wherein the content ratio of the anionic fluorine-containing surfactant to the cationic fluorine-containing surfactant is 1:10 to 10:1 in terms of mole ratio.