摘要:
There is provided a method for manufacturing a substrate for a display panel including a rib and a flat surface (hereinafter referred to as “substrate surface”) formed on one surface, the substrate surface being the region other than the rib in the substrate and including an electrode provided thereon, the substrate having a convex/concave shape (hereinafter referred to as “a substrate convex/concave shape”) composed of the rib and the substrate surface, comprising: a step 1 for positioning a mold having a convex/concave shape (hereinafter referred to as “a mold convex/concave shape) that is reversed to the substrate convex/concave shape so that the mold convex/concave shape and the substrate convex/concave shape are fitted to each other, the mold being provided with a flat surface (hereinafter referred to as “a mold convex surface”) facing to the substrate surface at a convex portion of the mold convex/concave shape, and with a surface (hereinafter referred to as “a mold concave bottom surface”) facing to a top surface of the rib (hereinafter referred to as “a rib top surface”) at a concave portion of the mold convex/concave shape; a step 2 performed after the step 1, for injecting an electrode material from an injection inlet opened on the mold convex surface; and a step 3 performed after the step 2, for solidifying the electrode material and detaching the mold from the substrate.
摘要:
There is provided a manufacturing method for a charged particle migration type display panel which has a plurality of cells partitioned between two substrates placed opposite to each other by partition walls, and charged particles enclosed in the individual cells, the method including a partition wall forming step of forming the partition walls in one of the substrates, and an electrode film forming step of forming, by vapor deposition, an electrode film on a surface of the substrate where the partition walls are formed, wherein an electric contact is disconnected between the electrode film formed on the substrate surface and a surplus electrode film formed on a side face of the partition wall in the electrode film forming step by performing an insulating part forming step of forming an insulating part so shaped that a deposition material does not reach vicinities of at least bases of the partition walls before the electrode film forming step.
摘要:
A storage battery which can further intensify the sealing properties of the electrode rod piercing portion thereof, a technique capable of increasing the area of the sealing surface at the sealed portion of the storage battery, a technique capable of certainly preventing the missing of mounting of a rubber-based sealing material corresponding to O-ring at the sealed portion of the storage battery, and an insulating material having an excellent corrosion resistance to highly corrosive battery content and a battery container including same are provided.An electrode rod 14 is allowed to extend upward through an annular member 15, a pressing member 18 is placed on the annular member 15, and a nut 22 is then threaded on a thread portion 21. This threading job is effected until the pressing member 18 is placed on and stopped by a collar portion 23. At the time when threading ends, a neck portion 25 is somewhat compressed to exhibit sealing properties. At the same time, a head portion 26 is drastically compressed and thus forms a first sealing portion at Point P1, a second sealing portion at Point P2 and a third sealing portion at Point P3. Further, while a disc sealing member 23 being properly compressed by the annular member 15 made of a resin and a current collecting plate 17, they are put in a vacuum heating furnace where they are then subjected to heat treatment at 160° C. in vacuo for 72 hours. This heat treatment allows PET film 25 to be heat-fused to the annular member 15 made of a resin and PET film 26 to be heat-fused to the current collecting plate 17. Moreover, a lid body 12 is formed integrally with an annular member 15 of rubber having a spindle-shaped section. And, this annular member 15 of rubber is bonded to PET film 32, 32 by the action of adhesive layer 33, 33. Since this bonding is firm, the annular member 15 of rubber cannot be detached from the lid body 12 during use.Further, an insulating material for electrode mounting to be used in a battery container which is made of a polyethylene terephthalate resin and a container having a lid member obtained by forming a polyester resin-coated aluminum sheet double-seamed attached to the opening of the body of a can are provided, and a polyethylene terephthalate resin insulating material for electrode mounting is attached to a through-hole provided piercing the central part of the lid member with an adhesive including (B) a hardener made of at least one of phenolic resin, amino resin and polyisocyanate resin incorporated in (A) a polyester resin including a dicarboxylic acid component mainly including terephthalic acid and a glycol component and having a glass transition temperature of from 30° C. to 110° C., whereby the battery content has an excellent corrosion resistance to the electrolyte including a highly corrosive propylene carbonate salt as a main component, etc. and an enhanced leakage resistance.
摘要:
Reheating a grain-oriented electrical steel sheet slab comprising predetermined components to 1280° C. or more and a solid solution temperature of inhibitor substances or more, hot rolling, annealing, and cold rolling it, decarburization annealing it, nitriding it in a strip running state, coating an annealing separator, and finish annealing it during which making a precipitation ratio of N as AlN after hot rolling 20% or less, making a mean grain size of primary recrystallization 7 μm to less than 20 μm, and making a nitrogen increase ΔN in the nitridation within a range of Equation (1) and making nitrogen contents σN1 and σN2 (front and back, mass %) of a 20% thickness portion of one surface of the steel strip (sheet) within a range of Equation (2): 0.007−([N]−14/48×[Ti])≦ΔN≦[solAl]×14/27−([N]−14/48×[Ti])+0.0025 Equation (1) |σN1−σN2|/ΔN≦0.35 Equation (2)
摘要:
There is provided a resonant-oscillating-device fabrication method comprising a thickness measurement step of measuring a thickness of a substrate, a piezoelectric-layer formation condition determination step of determining conditions of forming a piezoelectric layer to bring frequency of resonant oscillation of an oscillating element to a desired resonant frequency in accordance with the thickness of the substrate measured in the thickness measurement step, and a piezoelectric-element formation step of forming the piezoelectric element in accordance with the piezoelectric-layer formation conditions determined in the piezoelectric-layer formation condition determination step.
摘要:
An electrode sheet of an electric double layer capacitor is produced by using granules for formation of an electrode of an electric double layer capacitor which are obtained by kneading and then crushing materials including an activated material, a conductive filler, and a binder at 50 to 97 mass-%, 1 to 30 mass-%, and 2 to 20 mass-%, respectively, and which are essentially granules whose diameter is in a range of 47 to 840 μm.A method for manufacturing a sheet-like electrode by mixing and kneading materials including an activated carbon, carbon black, and PTFE into a kneaded material, producing a forming material by converting the kneaded material into granules, and forming and rolling the forming material.
摘要:
In an electrode drying process in which the electrode is molded in a sheet shape by kneading activated carbon powder, a binding material and an organic solvent for lubrication and a polarizing property electrode is formed by heating and removing the organic solvent for lubrication in the molded electrode, the organic solvent for lubrication included in the electrode is removed in a state in which the above electrode is widened in the sheet shape. In a manufacturing method of an electrode sheet for the electrical double layer capacitor, continuous drying and vacuum drying are performed in a drying process.
摘要:
A polarized electrode for an electric double-layer condenser, which has a structure for preventing the damage of the end portion of the electrolyte belonging to the collecting foil, in the process for manufacturing the electric double-layer condenser, and an electric double-layer condenser using the polarized electrode.
摘要:
The present invention, in a method to produce a grain-oriented electrical steel sheet, proposes conditions for stable production by clarifying the causes by which secondary recrystallization is rendered unstable when primary recrystallization is controlled by raising the heating rate of decarburization annealing. The primary recrystallization structure is controlled by changing the heating rate and the oxide layer of a steel sheet is controlled by changing the conditions of soaking annealing in the decarburization annealing. The composition of the (Al, Si)N inhibitor is also controlled in the nitriding treatment thereafter.
摘要:
A predetermined steel containing Te: 0.0005 mass % to 0.0050 mass % is heated to 1320° C. or lower to be subjected to hot rolling, and is subjected to annealing, cold rolling, decarburization annealing, and nitridation annealing, and thereby a decarburized nitrided steel sheet is obtained. Further, an annealing separating agent is applied on the surface of the decarburized nitrided steel sheet and finish annealing is performed, and thereby a glass coating film is formed. The N content of the decarburized nitrided steel sheet is set to 0.0150 mass % to 0.0250 mass % and the relationship of 2×[Te]+[N]≦0.0300 mass % is set to be established. Note that [Te] represents the Te content and [N] represents the N content.