摘要:
A fuel-cell assembly has a plurality of unit cells, each of the unit cells comprising an anode, an electrolyte, a cathode, and a current collector. The fuel-cell assembly has a plurality of electrical interconnection elements, at least one electrical interconnection element being connected respectively to each anode, to each cathode, and to each current collector of the unit cells. The unit cells are arranged in a stack and are mechanically supported by electrical interconnection elements such that each of the unit cells of the stack has at least one edge free to move relative to the electrical interconnection elements.
摘要:
A fuel cell is disclosed that includes a passive support having a fine pore region disposed between a first coarser pore region and a second coarser pore region. An exemplary fuel cell has an electrolyte material positioned in the fine pore region and a first electrode material positioned in the first coarser pore region and a second electrode material positioned in the second coarser pore region. Other exemplary devices and/or methods are also disclosed.
摘要:
A method for making a photonic structure, including creating a first vapor stream of a first vapor material, the first vapor stream having a first non-uniform flux in at least one direction; and moving a substrate in at least a portion of the vapor stream. In addition, the method includes depositing the first vapor material on a first major surface of said substrate, and forming a first layer and a density gradient in the first layer during deposition. The first layer is disposed on and the density gradient is in a direction perpendicular to the first major surface.
摘要:
A fuel cell has at least one electrode operatively disposed in the fuel cell, the electrode(s) having a catalytically active surface. A mechanism is provided for substantially maintaining catalysis over the active surface of the electrode(s).
摘要:
Subject matter includes a fuel cell with a catalytic combustor seal and related methods. The catalytic converter is positioned to come in contact with a fuel after the fuel has traversed a path over an intended electrode and the fuel is catalytically converted before the fuel can come in contact with an unintended electrode.
摘要:
Disclosed herein are methods for applying crystalline materials to a substrate by applying a cation and an anion and crystallizing at least a portion of the reaction product of the cation and the anion. The application of at least one of the cation or the anion is actively controlled such that it is applied in a patternwise or blanketwise fashion.
摘要:
A method of making a fuel cell includes the following steps. A pattern is placed on a base surface to create a predetermined topography on the base surface. An anode layer, a cathode layer and/or an electrolyte layer is/are deposited over the pattern. Areas of higher topography are removed from areas of lower topography using chemical mechanical planarization to form a predetermined fuel cell structure.
摘要:
Various embodiments of the invention are directed toward a fuel cell assembly comprising a fuel cell casing and one or more fuel cell elements comprised of electrode and electrolyte material. The fuel cell casing is configured with threads and the fuel cell elements can be threadingly engaged in the fuel cell casing.
摘要:
A fuel cell has a MEMS fuel-cell structure including an anode, a cathode, and an electrolyte, formed on a substrate, a portion of the substrate being removed from beneath the MEMS structure to leave the MEMS structure suspended in membrane form. An opening may extend through the substrate to leave the MEMS fuel-cell structure in a cantilevered configuration, supported by only one edge. Additional openings may be formed to relieve mechanical stress near an edge or edges supporting the MEMS fuel-cell structure, and/or to limit heat-conducting paths. Specially adapted methods are disclosed for fabricating the MEMS-based fuel cell in any of its various configurations.