Abstract:
Disclosed are an organic light emitting display having a touch sensor, which may achieve process simplification and cost reduction, and a method of fabricating the same. The organic light emitting display includes a compensation film having a flat surface and formed to cover dams forming a boundary with an organic encapsulation layer and the compensation film has a planarized surface between a region above the dams and a boundary region between the dams and the organic encapsulation layer (144) and may prevent cut and short-circuit of routing lines cutting across the same. Further, touch sensors are disposed on an encapsulation unit including the organic encapsulation layer and thus a separate attachment process is not required, thereby simplifying the overall process and reducing manufacturing costs of the organic light emitting display.
Abstract:
A thin and lightweight display device is disclosed. An organic light-emitting display device having a touch sensor is configured such that an outer planarization layer fills a space between a plurality of dams, thereby preventing a short circuit between routing lines in the space between the dams, and such that touch electrodes are disposed on an encapsulation structure for encapsulating a light-emitting element, with the result that an additional bonding process is not required, whereby the process is simplified and cost is reduced.
Abstract:
A substrate can include a thin film transistor for a touch display, which is capable of preventing oxidation of a touch connection electrode. In the substrate including a thin film transistor, an inorganic insulation film for covering a side surface of a planarization film, which exposes a touch sensing line, is formed of a material different from that of the planarization film, and a touch connection electrode is located on a side surface of the inorganic insulation film.
Abstract:
An array substrate for a display device includes a first thin film transistor (TFT) including a first semiconductor layer, a first gate electrode corresponding to the first semiconductor layer, a first source electrode and a first drain electrode; a second TFT including a second semiconductor layer, a second gate electrode corresponding to the second semiconductor layer, a second source electrode and a second drain electrode; a first transparent capacitor electrode connected to the first drain electrode; a first passivation layer on the first transparent capacitor electrode; a second transparent capacitor electrode on the first passivation layer and connected to the second drain electrode, the second transparent capacitor electrode overlapping the first transparent capacitor electrode; a second passivation layer on or over the first passivation layer and the second transparent capacitor electrode; and a first electrode on the second passivation layer and connected to the second transparent capacitor electrode.
Abstract:
A display device prevents cracks from spreading to an active area. The display device includes a substrate including an active area and a non-active area having a bending area, a thin-film transistor disposed in the active area, a light-emitting element disposed in the active area and connected to the thin-film transistor, an encapsulation layer disposed on the light-emitting element, a touch sensor disposed on the encapsulation layer, a touch pad disposed in the non-active area, a first routing line connecting the touch sensor to the touch pad via a second routing line in the bending area, and a crack prevention layer disposed on the second routing line in the bending area. Thus, the crack prevention layer is capable of preventing the occurrence of cracks in the bending area BA, thus preventing cracks from spreading to the active area AA.
Abstract:
A touch display device for preventing deterioration in image quality is structured such that a plurality of touch sensors is disposed on an encapsulation unit encapsulating a light-emitting element and includes a driving signal line, which includes a first driving signal line disposed below the encapsulation unit and a second driving signal line disposed above the encapsulation unit so as to be in contact with the first driving signal line to reduce line resistance of the driving signal line, thereby preventing deterioration in image quality.
Abstract:
Disclosed are an organic light emitting display having a touch sensor, which may achieve process simplification and cost reduction, and a method of fabricating the same. The organic light emitting display includes a compensation film having a flat surface and formed to cover dams forming a boundary with an organic encapsulation layer and the compensation film has a planarized surface between a region above the dams and a boundary region between the dams and the organic encapsulation layer (144) and may prevent cut and short-circuit of routing lines cutting across the same. Further, touch sensors are disposed on an encapsulation unit including the organic encapsulation layer and thus a separate attachment process is not required, thereby simplifying the overall process and reducing manufacturing costs of the organic light emitting display.
Abstract:
A display device prevents cracks from spreading to an active area. The display device includes a substrate including an active area and a non-active area having a bending area, a thin-film transistor disposed in the active area, a light-emitting element disposed in the active area and connected to the thin-film transistor, an encapsulation layer disposed on the light-emitting element, a touch sensor disposed on the encapsulation layer, a touch pad disposed in the non-active area, a first routing line connecting the touch sensor to the touch pad via a second routing line in the bending area, and a crack prevention layer disposed on the second routing line in the bending area. Thus, the crack prevention layer is capable of preventing the occurrence of cracks in the bending area BA, thus preventing cracks from spreading to the active area AA.
Abstract:
A touch display device includes a display unit including a plurality of pixels disposed in an active area, an encapsulation unit disposed on the display unit, the encapsulation unit being configured to seal the plurality of pixels, and a touch sensor unit including an organic buffer layer disposed on the encapsulation unit and a plurality of touch sensors disposed on the organic buffer layer in the active area, wherein the end of the organic buffer layer and the end of the encapsulation unit are disposed in a bezel area adjacent to the bezel area so as to have a stepped end profile, and a plurality of touch routing lines connected to the plurality of touch sensors of the touch sensor unit and disposed in the bezel area is disposed along the stepped end profile of the end of the organic buffer layer and the end of the encapsulation unit.
Abstract:
A thin and lightweight display device is disclosed. An organic light-emitting display device having a touch sensor is configured such that an outer planarization layer fills a space between a plurality of dams, thereby preventing a short circuit between routing lines in the space between the dams, and such that touch electrodes are disposed on an encapsulation structure for encapsulating a light-emitting element, with the result that an additional bonding process is not required, whereby the process is simplified and cost is reduced.