Abstract:
The present disclosure relates to a wireless power receiver and a method therefor, the wireless power receiver comprising: a secondary coil which is magnetically coupled to a primary coil provided in a wireless power transmitter so as to receive wireless power from the wireless power transmitter; a shielding member for supporting the secondary coil; a power pickup unit including a rectifier circuit which rectifies an alternating current signal of the wireless power received by the secondary coil into a direct current signal; and a communication/control unit for controlling transmission of the wireless power and communicating with the wireless power transmitter. On the basis of the secondary coil and shielding member according to the present embodiment, slimming of an applied product may be achieved and, simultaneously, the same target performance index (required for a medium power level (for example, 60 W) standard) may be realized.
Abstract:
Disclosed are a wireless power transfer apparatus and a method of controlling the same. The wireless power transfer apparatus in one example can include a power transmission circuit including a plurality of coils and configured to transfer power through the plurality of coils, and a controller, wherein the controller is configured to calculate a data value of a coil with respect to each of the plurality of coils, and determine a position of an object in a charge region corresponding to the plurality of coils in a charge region based on a comparison result obtained by comparing the data value calculated for each of the plurality of coils.
Abstract:
The present invention relates to a wireless power transfer apparatus. The wireless power transfer apparatus includes: a resonant circuit unit including a plurality of coils and a plurality of capacitor elements respectively connected to the plurality of coils; and a controller configured to calculate individual quality factor of each of the plurality of coils and a total quality factor of the plurality of coils, at a resonant frequency, and calculate whether foreign matter exists on a charging surface, based on the total quality factor and the individual quality factor, at the resonance frequency. Accordingly, foreign matter on the charging surface can be detected more easily.
Abstract:
According to an embodiment of the present invention, a resonator transmitting power in a resonant mode includes: a first coil having a wire group including three wires arranged in line and alternately extended in first direction and second direction orthogonal to the first direction; and a second coil including three sub-coils and ferrite plates, and the first coil may be stacked adjacent to the second coil, and the first coil may correspond to a resonance coil driven in the resonance mode and the second coil may correspond to an induction coil driven in an induction mode, respectively.
Abstract:
An image display apparatus are disclosed. The image display apparatus includes a display including a first electrode and a second electrode, for wireless power reception, a signal processor disposed apart from the display, and including a third electrode and a fourth electrode, for wireless power transmission, and a first bridge electrode and a second bridge electrode, including one ends apart from the first electrode and the second electrode, facing the first electrode and the second electrode, and the other ends apart from the first bridge electrode and the second bridge electrode, facing the first bridge electrode and the second bridge electrode.
Abstract:
The present specification provides a wireless power transfer device formed to transmit power to a wireless power reception device, and a power transfer unit in the wireless power transfer device comprises: a first coil formed to generate a magnetic field so as to transmit power in an induction scheme; and a second coil wound around the first coil and formed to generate a magnetic field vibrating at a resonance frequency so as to transmit power in a resonance scheme.
Abstract:
The present specification provides a wireless power transfer device formed to transmit power to a wireless power reception device, and a power transfer unit in the wireless power transfer device comprises: a first coil formed to generate a magnetic field so as to transmit power in an induction scheme; and a second coil wound around the first coil and formed to generate a magnetic field vibrating at a resonance frequency so as to transmit power in a resonance scheme.
Abstract:
A wireless power transmitter according to one embodiment of the present disclosure comprises a primary coil forming magnetic coupling with a secondary coil provided in a wireless power receiver and transmitting wireless power to the wireless power receiver, wherein the primary coil is formed by spirally winding a plurality of subcoils connected electrically in parallel while keeping the subcoils in contact with each other, and the subcoil is litz wire consisting of several conducting wires packed in a bundle.
Abstract:
The present specification relates to a wireless power receiving device, receiving method, and receiving system, the device comprising individual rectifiers for each receiving coil, wherein the individual rectifiers comprise isolators for isolating a receiving coil for PC0 from a receiving coil for PC1.
Abstract:
The present disclosure relates to a wireless power transmission device. A wireless power transmission device according to an embodiment of the present disclosure includes: a coil part including a plurality of partially overlapping coils; a coil combination generator configured to generate coil combinations including at least one of the plurality of coils; and a controller configured to transmit a coil selection signal through the coil combinations and to select an operating coil combination from the coil combinations based on a response intensity of a response signal for the coil selection signal and charging efficiency of a wireless power reception device. Accordingly, a high-efficiency charging area can be extended in partially overlapping multiple coils.