Abstract:
A method may be provided for controlling a laundry treating apparatus. A first speed rotating may control the drum to accelerate the drum to rotate at a first speed, a braking may apply a brake to stop the drum, a second speed accelerating may accelerate the drum to a second speed, a current sensing may sense a current being applied to the motor during the drum is accelerated to the second speed, and a laundry amount determining may determine a laundry amount based on the current sensed in the current sensing.
Abstract:
The present disclosure relates to a drain pump driving apparatus and a laundry treatment machine including the same. A drain pump driving apparatus according to an embodiment of the present disclosure includes a controller configured to drive a motor, during drainage, based on an output current and a direct current (DC) terminal voltage with a first power when a lift is at a first level and to drive the motor with the first power when the lift is at a second level that is greater than the first level, wherein the lift is a difference between a water level of a water introduction part through which water flows into a drain pump and a water level of a water discharge part through which the water is discharged out of the drain pump. Accordingly, water pumping can be performed smoothly even if the lift is changed during the drainage.
Abstract:
Disclosed herein is a drain pump driving apparatus and a laundry treatment machine including the same. The drain pump driving apparatus and the laundry treatment machine including the same according to an embodiment of the present invention include a motor to operate the drain pump, an inverter to convert a direct current (DC) power to an alternating current (AC) power by a switching operation and output the converted AC power to the motor, an output current detector to detect an output current flowing to the motor, and a controller to control the inverter, wherein the controller may calculate a speed ripple of the motor based on the output current and performs a control operation based on the calculated speed ripple of the motor to change a speed of the motor.
Abstract:
The present invention relates to a vacuum cleaner. The vacuum cleaner of the present invention comprises: a cleaner body having a suction motor for generating suctioning force, and running in operating mode and charging mode; a suctioning part communicating with the cleaner body, for suctioning air and dust; a battery assembly capable of supplying power to the suction motor and having a plurality of battery packs; a controller for controlling the operation of the suction motor; a current regulating unit for regulating the current applied to the suction motor in a state in which the plurality of battery packs are serially connected; a first switching mechanism for serially connecting the plurality of battery packs; and a second switching mechanism for parallelly connecting the plurality of battery packs.
Abstract:
Provided are a vacuum cleaner that uses both alternating current (AC) power and direct current (DC) power without a separate switch module, and a control method thereof. The cleaner includes a suction nozzle sucking a cleaning target, a suction connection part connected to the suction nozzle and allowing the sucked cleaning target to pass therethrough, and a main body separated from the suction nozzle and having a dust box collecting the cleaning target, wherein the main body includes a suction force generating unit installed in the main body to generate a suction force and a power supply unit detachably provided in the main body to apply a voltage to the suction force generating unit, wherein the power supply unit supplies power to the suction force generating unit using any one of a DC voltage and an AC voltage.
Abstract:
Provided is a vacuum cleaner. The vacuum cleaner includes a cleaner body including a moving device for moving, a suction device connected to the cleaner body to suction dusts and air and guide the suctioned dusts and air to the cleaner body, the suction device including a handle, a detection device for detecting a distance between the handle and the cleaner body, and a controller determining whether movement of cleaner body is necessary on the basis of the distance between the cleaner body and the handle, the controller controlling the moving device when the movement of the cleaner body is necessary. The controller controls the moving device to allow the cleaner body to avoid an obstacle when it is determined that an operation for avoiding the obstacle is necessary while the moving device operates.
Abstract:
A refrigerator according to the present invention includes: an ice maker for generating ice; an ice bin for storing the ice generated by the ice maker and including a rotational blade that can be rotated in order to discharge the ice; a motor for generating power for rotating the rotational blade; a manipulation pad provided on the door of the refrigerator and manipulated to discharge the ice from the ice bin; a manipulation sensing part for detecting the manipulation of the manipulation pad; and a controller for operating the motor when the manipulation of the manipulation pad is detected by the manipulation sensing part, wherein the controller may rotate the motor in one direction to discharge the ice from the ice bin and the controller rotates the motor in the other direction, which is the opposite direction of the one direction, for a set period of time when the manipulation of the manipulation pad is not detected by the manipulation sensing part during the process of discharging the ice.
Abstract:
Disclosed is a drain pump driving apparatus and a laundry treatment machine including the same. The laundry treatment machine includes: a drain pump driving apparatus configured to drive a drain pump, wherein the drain pump driving apparatus includes: a motor to drive the drain pump; an inverter to convert a direct current (DC) power to an alternating current (AC) power by a switching operation, and output the converted AC power to the motor; an output current detector to detect an output current flowing to the motor; and a controller configured to control the inverter, wherein the controller is further configured to calculate a speed of the motor based on an output current, and calculate a lift, which is a difference between a water level of a water introduction part through which water flows into the drain pump and s water level of a water discharge part for discharging water from the drain pump, based on the calculated speed.
Abstract:
A home appliance is disclosed, including a first circuit unit including a converter configured to convert an Alternating Current (AC) power into a Direct Current (DC) power, a first coil, a first modulator/demodulator configured to wirelessly transmit the DC power generated by the converter using the first coil, and a first controller configured to control the first modulator/demodulator, and a second circuit including a second coil configured to receive a wireless power transmitted by the first circuit unit, a second modulator/demodulator configured to convert the wireless power received from the second coil, a rectifier configured to rectify an AC power generated by the second modulator/demodulator, and a second controller configured to control operation of the second modulator/demodulator, wherein the first modulator/demodulator and the second modulator/demodulator perform bidirectional time-division data communication.
Abstract:
The present invention relates to a motor driving apparatus and a home appliance including the same. A motor driving apparatus according to an embodiment of the present invention includes an inverter for converting a DC voltage of a DC-link capacitor into an AC voltage according to a switching operation and outputting the converted AC voltage to a motor; a DC-link resistor disposed between the DC-link capacitor and the inverter; and a controller for controlling the inverter based on a phase current sampled through the DC-link resistor, wherein the controller estimates a phase current based on the phase current sampled through the DC link resistor, in an interval in which phase current detection is not possible. Thereby, the phase current flowing through the motor may be accurately calculated using the DC link resistor.