Abstract:
Disclosed are an electronic device and a method for controlling the same. The electronic device and the method for controlling the same, according to the present invention, comprise: an output unit for emitting a radiated signal to at least one subject; a receiving unit for detecting a reflected signal of the radiated signal by the at least one subject; and a control unit for calculating the distance to the at least one subject on the basis of the reflected signal and transforming the wave form of the radiated signal of the output unit to change the measurable range of the distance. According to the present invention, it is possible to transform the wave form of a radiated signal to change the measurable range of the distance to a subject.
Abstract:
The present invention relates to an RGB-IR sensor, and a method and an apparatus for obtaining a 3D image by using the same. The RGB-IR sensor according to the present invention comprises: a first pixel basic unit including one of each of R, G, B and IR pixels; and a second pixel basic unit in which the R, G, B and IR pixels are arranged in a different order from those in the first pixel basic unit, wherein the RGB-IR sensor is comprised by alternately arranging the first pixel basic unit and the second pixel basic unit in a horizontal direction, and wherein R, G, B and IR pixel arrangements in the first pixel basic unit and the second pixel basic unit are determined so that the position of IR-pixels in the RGB-IR sensor are not equidistance apart from each other.
Abstract:
The present invention includes a fixed unit having a perforated hole formed therein, a movable unit including at least one lens, the movable unit configured to linearly move in the perforated hole of the fixed unit, a movable coil disposed on a surface of the movable unit, and a fixed coil disposed on a surface of the fixed unit, the fixed coil configured to receive from the movable coil an induced current or voltage according to a distance from the movable coil, wherein the movable coil receives a current or a voltage via a first wiring and a second wiring for moving the movable unit, and wherein the fixed coil outputs a current or a voltage via a third wiring and a fourth wiring based on the received induced current or voltage from the movable coil.
Abstract:
A dual camera module that includes a voice coil motor actuator and a method for controlling the same are disclosed. The dual camera module comprises a first camera including a first lens module; a second camera including a second lens module, arranged to adjoin the first camera; and a controller for controlling the first camera and the second camera, wherein the controller identifies whether the first camera includes a first sensing module for sensing movement of the first lens module if a camera execution command is received, identifies whether the second camera includes a second sensing module for sensing movement of the second lens module if the first camera includes the first sensing module, identifies whether the first sensing module of the first camera and the second sensing module of the second camera have the same type as each other if the second camera includes the second sensing module, and controls the first camera and the second camera at different time zones if the first sensing module and the second sensing module have the same types as each other.
Abstract:
A method of monitoring a driver including obtaining images from the first and second camera unit, checking whether a brightness of the image obtained from the first camera unit is equal to or greater than a reference value or whether the driver is detected from the image obtained from the second camera unit, if the brightness of the image obtained from the first camera unit is not equal to or greater than the reference value or the driver is not detected from the image obtained from the second camera unit, obtaining a first comparative image from the first camera unit by turning off the second illumination unit and a second comparative image from the first camera unit by turning on the second illumination unit, checking whether a difference value between a brightness of the obtained first comparative image and a brightness of the obtained second comparative image is equal to or greater than a reference difference value, and if the difference value between the brightness of the obtained f comparative image and the brightness of the obtained second comparative image is not equal to or greater than the reference difference value, turning off the second illumination unit.
Abstract:
The present invention relates to a depth image obtaining device enabled to obtain a depth image of a subject located at a far distance, and a display device using the same, the depth image obtaining device comprising: a light irradiation part for irradiating light onto a predetermined subject; a light receiving part receiving light reflected from the subject; and a control part for controlling the light irradiation part and the light receiving part. The light irradiation part comprises alight source part for emitting light in a first direction and a reflection part for reflecting the light emitted in the first direction into a second direction.
Abstract:
The present invention provides an apparatus and a method for obtaining a 3D image. The apparatus for obtaining the 3D image, according to one embodiment of the present invention, comprises a light transmitting portion for emitting infrared ray (IR) structured light onto a recognized object; a light receiving portion comprising an RGB-IR sensor for receiving infrared rays and visible light reflected from the recognized object; a processor for obtaining 3D image information including depth information and a visible light image of the recognized object by using each of the infrared rays and the visible light, which are received by the light receiving portion; and a lighting portion for controlling a lighting cycle of the infrared ray (IR) structured light. Also, the present invention further comprises an image recovery portion for recovering a 3D image of the recognized object by using the 3D image information which is obtained by the processor, and a display portion for providing the recovered 3D image on a visual screen. The present invention, by means of the method and the apparatus, for obtaining the 3D image, can adaptively respond to the brightness of ambient light so as to eliminate interference by the RGB-IR sensor. As a result, more accurate 3D images can be obtained regardless of time or place of image capturing, such as night, day, a dark space, or a bright space.