Abstract:
The present description provides a method applicable to a network supporting a number of network modes of operation (NMOs). In the method, a user equipment (UE) in the NMO 1 receives a control signal, such as mobility management backoff timer, indicating an access restriction on packet switched (PS) domain of the network. Therefore, the UE in the NMO 1 performs location area update (LAU) procedure associated with circuit switched (CS) domain without performing combined routing area update (RAU) procedure associated with both the PS domain and the CS domain, while the access restriction is in place. The UE in the NMO 1 is configured to perform combined attach procedure, which is associated with both the PS domain and the CS domain, when attaching to the network. Further, the UE in the NMO 2 is configured to perform CS attach procedure and PS attach procedure separately, when attaching to the network.
Abstract:
The present invention is directed to a wireless communication system. Specifically, the present invention is directed to a method of controlling network access and an apparatus therefore, wherein the method comprises: receiving a message related with access parameters, the message including a first N-bit field, a second N-bit field and a third 1-bit field, wherein the first N-bit field indicates a maximum number of slots the wireless device is to delay due to random back-off between consecutive access probes, the second N-bit field indicates a maximum number of slots the wireless device is to delay due to random back-off between successive enhanced access probe sequences, and the third 1-bit field for indicating a network congestion situation.
Abstract:
A method and apparatus for reliably and quickly establishing multiple reverse links in multi-carrier wireless networks is provided. Signaling channels are established on an existing forward link in order to transmit reverse link power control bits and the acknowledgment indications.
Abstract:
For Inter-APN routing flow distribution, a step of receiving, by a UE from a server, an Inter-System Routing Policy (ISRP) rule that comprises flow distribution rules for at least one of a For Flow Based flow distribution container used for IP Flow Mobility (IFOM), a For Service Based flow distribution container used for Multi-Access PDN Connectivity (MAPCON), a For Non-Seamless Offload flow distribution container used for Non-Seamless WLAN Offload (NSWO), and an Inter-APN routing flow distribution container, is performed. Here, the Inter-APN routing flow distribution container comprises information related to routing IP flows with respect to a plurality of APNs for using PDN connections to access multiple IP networks. Then a step of selecting, by the UE, among active/valid flow distribution rules in the received ISRP rule, a flow distribution rule having highest priority is performed.
Abstract:
A method of receiving an acknowledgement (ACK) signal from at least one access terminal (AT) in a wireless communication system is disclosed. More specifically, the method includes transmitting at least one packet via a packet data channel from an access network (AN), receiving at least one ACK signal from the at least one AT using same channelization resources, wherein each AT is assigned a code specific to each AT, and identifying the ACK signal corresponding to the transmitted packet from the received at least one ACK signal.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and an apparatus for processing a NAS signaling request. A method for performing a non-access stratum (NAS) signaling process by means of a terminal in a wireless communication system according to one embodiment of the present invention comprises: a step of receiving a first message that includes information indicating a network failure from a network node of a first network; a step of starting a timer relating to a network selection; and a step of selecting a second network from among network candidates excluding the first network during the operation of the timer relating to a network selection.
Abstract:
A method of receiving an acknowledgement (ACK) signal from at least one access terminal (AT) in a wireless communication system is disclosed. More specifically, the method includes transmitting at least one packet via a packet data channel from an access network (AN), receiving at least one ACK signal from the at least one AT using same channelization resources, wherein each AT is assigned a code specific to each AT, and identifying the ACK signal corresponding to the transmitted packet from the received at least one ACK signal.
Abstract:
A method is presented for controlling timers in a wireless communication system. When an idle mode signaling reduction (ISR) function of a user equipment (UE) is activated in the UE, a periodic tracking area update (P-TAU) timer and a periodic routing area update (P-RAU) timer are started. The P-TAU timer and the P-RAU timer run in the UE for updating a Mobility Management Entity (MME) and a Serving General packet radio service Support Node (SGSN) independently. The ISR function is activated when an update message activating the ISR function is received by the UE. When the P-TAU timer expires and the UE cannot initiate a tracking area update (TAU) procedure as a mobility management backoff (MM-BO) timer is running, a deactivate ISR timer corresponding to a first type network is started. The MM-BO timer is a timer configured to start when a MM-BO time value is received in the UE.
Abstract:
A method and apparatus for reliably and quickly establishing multiple reverse links in multi-carrier wireless networks is provided. Signaling channels are established on an existing forward link in order to transmit reverse link power control bits and the acknowledgment indications.
Abstract:
A method and apparatus for reliably and quickly establishing multiple reverse links in multi-carrier wireless networks is provided. Signaling channels are established on an existing forward link in order to transmit reverse link power control bits and the acknowledgment indications.