Abstract:
A method of performing a random access channel (RACH) procedure between a mobile terminal and a network includes the steps of detecting whether a random access response (RAR) is received from the network within a certain time period, the RAR including information about a random access channel (RACH) preamble transmitted to the network; and if the RAR is not received within the certain time period or if the information about the transmitted RACH preamble included in the RAR does not match the transmitted RACH preamble, performing a first procedure to detect failures in the RACH procedure; and if the RAR is received within the certain time period and if the information about the transmitted RACH preamble included in the RAR matches the transmitted RACH preamble, performing a second procedure to detect failures in the RACH procedure.
Abstract:
A method of sending status information (STATUS PDU) in which a receiving side reports a data received state to a transmitting side in a mobile telecommunication system. A receiving side radio link control (RLC) entity considers an available radio resource to construct a status PDU fit to a size of the available radio resource and then sends the constructed status PDU to a transmitting side RLC entity, thereby avoiding a deadlock situation of RLC protocols.
Abstract:
A device and method for receiving, by a mobile terminal, system information from a base station. The method includes: receiving a block of first system information from the base station via a broadcast channel configured to broadcast only system information; and receiving a plurality of blocks of second system information from the base station via a downlink shared channel configured to carry system information and other data, one of the plurality of blocks of second system information including scheduling information
Abstract:
A mobile communications system including a network with a source network node and a target network node that supports a handover procedure, and a mobile terminal that is allowed to access the source network node and access the target network node according to the handover procedure, in which information related to a reception status of user data is delivered between at least two among a group including the mobile terminal, the source network node, and the target network node such that the target network node may receive status information from the source network node and the target network node may receive a status report from the mobile terminal.
Abstract:
Disclosed is a status report transmission of the PDCP layer for a PDCP status report which can reduce radio resources, by transmitting the reception success or failure of a series of PDCP SDUs in the form of a bitmap when configuring the PDCP status report for reporting a reception status of the PDCP SDU to another party in the PDCP layer in the LTE system.
Abstract:
A method for transmitting downlink data to a mobile terminal is disclosed. The mobile terminal receives a particular common H-RNTI (HS-DSCH Radio Network Identifier) via an HS-SCCH (High Speed-Shared Control Channel) associated with an HS-DSCH (High Speed-Downlink Shared Channel), recognizes whether a header of a MAC (Medium Access Control) PDU (Packet Data Unit) transmitted by the HS-DSCH includes a terminal-exclusive identifier, acquires the terminal-exclusive identifier, and processes the MAC PDU as its own if the acquired terminal-exclusive identifier is intended for the terminal itself.
Abstract:
An apparatus and method for performing procedures (protocols) of a PDCP (Packet Data Convergence Protocol) layer and an RLC (radio layer in an E-UMTS (Evolved Universal Mobile Telecommunications System) which has evolved from UMTS, among radio protocols of a mobile communication system. The PDCP layer performs ciphering on data (i.e., PDCP SDU) received from an upper layer, generates an indicator discriminating ciphered data and non-ciphered data (i.e., an ROHC feedback packet directly generated by the PDCP layer), and transmits the same to a lower layer (i.e., MAC layer). A PDCP SN (Sequence Number) is defined as an algorithm for ciphering the data in the PDCP layer to perform ciphering in the PDCP layer.
Abstract:
With respect to generating and sending a MAC PDU by using the radio resources allocated to the mobile terminal, the level of priority between the buffer status report (BSR) and the established logical channels are defined such that the data of each logical channel and buffer status report can be more effectively, efficiently and quickly transmitted.
Abstract:
According to one embodiment, a method for maintaining a communication between a mobile terminal and a network in a mobile communication system includes: determining whether a state of the mobile terminal is in an unsynchronized state while maintaining a radio resource control (RRC) connected state with the network; performing a random access channel (RACH) procedure for a synchronized state if it is determined that the state of the mobile terminal is in the unsynchronized state while maintaining the RRC connected state with the network; and after performing the RACH procedure, transitioning from the synchronized state to the unsynchronized state with the network while maintaining the RRC connected state with the network when a timer expires.
Abstract:
In a wireless mobile communications system, a method for controlling a radio resource allocation is provided. A network transmits access control information to a terminal such that a request for the radio resource allocation which will be transmitted from the terminal can be controlled. The terminal selectively transmits the request for the radio resource allocation based on the received information, thus a transmission of an unnecessary request for the radio resource can be minimized, thereby preventing a waste of the radio resource.