Abstract:
An apparatus and method for performing procedures (protocols) of a PDCP (Packet Data Convergence Protocol) layer and an RLC (radio layer in an E-UMTS (Evolved Universal Mobile Telecommunications System) which has evolved from UMTS, among radio protocols of a mobile communication system. The PDCP layer performs ciphering on data (i.e., PDCP SDU) received from an upper layer, generates an indicator discriminating ciphered data and non-ciphered data (i.e., an ROHC feedback packet directly generated by the PDCP layer), and transmits the same to a lower layer (i.e., MAC layer). A PDCP SN (Sequence Number) is defined as an algorithm for ciphering the data in the PDCP layer to perform ciphering in the PDCP layer.
Abstract:
An apparatus and method for performing procedures (protocols) of a PDCP (Packet Data Convergence Protocol) layer and an RLC (radio layer in an E-UMTS (Evolved Universal Mobile Telecommunications System) which has evolved from UMTS, among radio protocols of a mobile communication system. The PDCP layer performs ciphering on data (i.e., PDCP SDU) received from an upper layer, generates an indicator discriminating ciphered data and non-ciphered data (i.e., an ROHC feedback packet directly generated by the PDCP layer), and transmits the same to a lower layer (i.e., MAC layer). A PDCP SN (Sequence Number) is defined as an algorithm for ciphering the data in the PDCP layer to perform ciphering in the PDCP layer.
Abstract:
A method including receiving, by a user equipment (UE), a block of first system information from a base station via the BCH, and receiving, by the UE, a first block of second system information from the base station via the DL_SCH. The first block of second system information is scheduled with a fixed time offset. The method further includes receiving, by the UE, a plurality of second blocks of second system information from the base station via the DL_SCH in accordance with scheduling information included in the first block of second system information. The first block of second system information includes the scheduling information, value tag information, and cell access related information. The cell access related information includes at least one of Public Land Mobile Network (PLMN) identity information, tracking area information, and cell barred information. A specific control channel indicates frequency and time information.
Abstract:
A mobile communications system including a network with a source network node and a target network node that supports a handover procedure, and a mobile terminal that is allowed to access the source network node and access the target network node according to the handover procedure, in which information related to a reception status of user data is delivered between at least two among a group including the mobile terminal, the source network node, and the target network node such that the target network node may receive status information from the source network node and the target network node may receive a status report from the mobile terminal.
Abstract:
According to one embodiment, a method of processing data for a Hybrid Automatic Repeat Request (HARQ) operation in a wireless communication system includes: receiving control signaling from a network; receiving data based on the received control signaling; generating a positive response message (ACK) if the received data is successfully decoded or a negative response message (NACK) if the received data is not successfully decoded, wherein the generated ACK or the generated NACK is not transmitted to the network when a timer is expired or not running; and combining the received data with data currently in a buffer after the timer is stopped or expired.
Abstract:
In a wireless mobile communications system, a method for controlling a radio resource allocation is provided. A network transmits access control information to a terminal such that a request for the radio resource allocation which will be transmitted from the terminal can be controlled. The terminal selectively transmits the request for the radio resource allocation based on the received information, thus a transmission of an unnecessary request for the radio resource can be minimized, thereby preventing a waste of the radio resource.
Abstract:
With respect to generating and sending a MAC PDU by using the radio resources allocated to the mobile terminal, the level of priority between the buffer status report (BSR) and the established logical channels are defined such that the data of each logical channel and buffer status report can be more effectively, efficiently and quickly transmitted.
Abstract:
A method and device for receiving a warning message m a mobile communication system. The method includes receiving a paging message from a network. The paging message is used to inform the terminal about a presence of the warning message. The paging message includes a warning message indication indicating that there will be a transmission of the warning message through a downlink channel. The method includes after receiving the paging message, receiving system information in a system information block (SIB) through a control channel. The system information includes scheduling information for the warning message. The method includes receiving the warning message through the downlink channel according to the scheduling information. The warning message is an Earthquake and Tsunami Warning System (ETWS) message.
Abstract:
With respect to generating and sending a MAC PDU by using the radio resources allocated to the mobile terminal, the level of priority between the buffer status report (BSR) and the established logical channels are defined such that the data of each logical channel and buffer status report can be more effectively, efficiently and quickly transmitted.
Abstract:
A mobile communications system including a network with a source network node and a target network node that supports a handover procedure, and a mobile terminal that is allowed to access the source network node and access the target network node according to the handover procedure, in which information related to a reception status of user data is delivered between at least two among a group including the mobile terminal, the source network node, and the target network node such that the target network node may receive status information from the source network node and the target network node may receive a status report from the mobile terminal.