Abstract:
A SerDes data sampling controller that includes a gear shifting data sampling clock that zeroes the data sampling skew at the center of the unit interval during the CDR phase lock stage, and then skews the data sample timing away from the center of the unit interval as the DFE coefficients adapt during the data transfer stage. This allows the controller to implement the best (unskewed) data sample timing during the CDR phase locking stage, and then skew the data sample timing after the DFE coefficients have adapted to provide the best (skewed) data sample timing for data bit sampling during the data transfer stage. The data sampling gear shifter may apply a variable skew value to the transition sampling or quadrature (Q) data sampling clock differentially varying the quadrature (Q) transition sampling clock from the inphase (I) data sampling clock.
Abstract:
Embodiments of the present invention allow for adjustment of transmitter amplitude during joint transmitter (TX) and receiver (RX) equalization. During joint TX and RX adaptation, when the receiver requires a gain update, the receiver gain update is masked above or below a preset range. The RX gain update (instruction) is encoded into a transmitter amplitude update (instruction) transferred through back channel communication. The translation of RX gain to TX amplitude update is performed after the RX gain reaches a specified range. Such masking, encoding and translation reserves a certain amount RX gain range to account for RX gain variation due to process, voltage, and temperature (PVT) changes over time, and also to offer better linear equalization in the receiver over a constrained VGA bandwidth.
Abstract:
In described embodiments, a VCO based CDR for a SerDes device includes a phase detector, a VCO responsive to a first control signal and a second control signal and generating an output signal, a frequency calibration module configured to calibrate the frequency of the output signal by performing a coarse calibration and a subsequent fine calibration, a gear shifting control module controlling a gain change of the first and second control signals in time, and a look-up table created by fine calibration values generated from the frequency calibration module, wherein the programmed variable gain of the gear shifting control module is calculated by a calculation circuit employing the fine calibration values stored in the look-up table, the calculation of the calculation circuit adjusts gear shifting down, and adjusts a gear shifting gain, and adjusting an overall CDR gain over a VCO control curve.
Abstract:
A SerDes data sampling controller that includes a gear shifting data sampling clock that zeroes the data sampling skew at the center of the unit interval during the CDR phase lock stage, and then skews the data sample timing away from the center of the unit interval as the DFE coefficients adapt during the data transfer stage. This allows the controller to implement the best (unskewed) data sample timing during the CDR phase locking stage, and then skew the data sample timing after the DFE coefficients have adapted to provide the best (skewed) data sample timing for data bit sampling during the data transfer stage. The data sampling gear shifter may apply a variable skew value to the transition sampling or quadrature (Q) data sampling clock differentially varying the quadrature (Q) transition sampling clock from the inphase (I) data sampling clock.
Abstract:
Embodiments of the present invention allow for adjustment of transmitter amplitude during joint transmitter (TX) and receiver (RX) equalization. During joint TX and RX adaptation, when the receiver requires a gain update, the receiver gain update is masked above or below a preset range. The RX gain update (instruction) is encoded into a transmitter amplitude update (instruction) transferred through back channel communication. The translation of RX gain to TX amplitude update is performed after the RX gain reaches a specified range. Such masking, encoding and translation reserves a certain amount RX gain range to account for RX gain variation due to process, voltage, and temperature (PVT) changes over time, and also to offer better linear equalization in the receiver over a constrained VGA bandwidth.