Abstract:
A LDPC decoder includes a processor for targeted symbol flipping of suspicious bits in a LDPC codeword with unsatisfied checks. All combinations of check indices and variable indices are compiled and correlated into a pool of targeted symbol flipping candidates and returned along with symbol indices to a process that uses such symbol indices to identify symbols to flip in order to break a trapping set.
Abstract:
The disclosure is directed to a system for managing data samples utilizing a time division multiplexing controller to allocate time slots for accessing a sample memory according to one or more modes of operation. The time division multiplexing controller is configured to allocate slots for concurrent access by a sample controller, a plurality of detectors, and a noise predictive calibrator when a normal mode is enabled. The time division multiplexing controller is further configured to allocate slots excluding at least one of the sample controller, the plurality of detectors, and the noise predictive calibrator from accessing the sample memory when a retry mode is enabled. In some embodiments, the time division multiplexing controller is further configured to allocate time slots for one or more clients other than the sample controller, the plurality of detectors, and the noise predictive calibrator.
Abstract:
A layered LDPC decoder sorts and selects a subset of message entries for processing based on entry size. MIN1 and MIN2 values for each message entry in the subset are truncated, and either the truncated values or non-truncated values are combined with a symbol vector based on whether the subset of message entries includes a variable node associated with the layer being processed.
Abstract:
A read channel is configured to receive at least part of a data fragment read from a storage media into a register, wherein the data fragment is configured to be formatted with a preamble, a sync mark (e.g., a syncMark), and user data, and wherein the data fragment is missing a sync mark. A position in the data fragment is selected, a sync mark is assumed at the selected position. The data is then processed assuming the sync mark is at the selected position of the data fragment to determine whether the data converges. When a determination is made that the data converges, the data is recovered.
Abstract:
A read channel is configured to receive at least part of a data fragment read from a storage media into a register, wherein the data fragment is configured to be formatted with a preamble, a sync mark (e.g., a syncMark), and user data, and wherein the data fragment is missing a sync mark. A position in the data fragment is selected, a sync mark is assumed at the selected position. The data is then processed assuming the sync mark is at the selected position of the data fragment to determine whether the data converges. When a determination is made that the data converges, the data is recovered.