Abstract:
A storage system and method for interleaving a plurality of logical sectors in the storage system is disclosed. The method includes: dividing each logical sector into a predetermined number of slices; sequentially indexing the logical sectors, wherein each logical sector is identified by a logical sector index; sequentially indexing the predetermined number of slices in each logical sector, wherein each slice of the predetermined number of slices is identified by a slice index within each logical sector; and interleaving the logical sectors according to a slice interleaving process. The interleaving step further includes: a) identifying a first indexed slice of a first indexed logical sector as an initial slice; and b) identifying a subsequent slice by advancing the slice index to a subsequent index in the slice index sequence and advancing the logical sector index to a subsequent index in the logical sector index sequence.
Abstract:
The present inventions are related to systems and methods for data processing, and more particularly to systems and methods for performing data decoding. In one case a data processing system is disclosed that includes a decoder circuit operable to apply a low density parity check algorithm to a decoder input to yield an interim decoded output, where the decoder input is a codeword formed of two bit symbols, and where the decoder input is encoded to yield a last layer including at least two different entry values. In addition, the data processing system includes an inverse mapping circuit operable to remap the interim decoded output to yield an overall decoded output.
Abstract:
A storage system includes a storage medium operable to maintain a data set, a read/write head assembly operable to write the data set to the storage medium and to read the data set from the storage medium, a multi-level enumerative encoder operable to encode the data set before it is written to the storage medium as encoded data, wherein the enumerative encoder applies an enumeration using a plurality of level-dependent bases, and a decoder operable to decode the data set after it is read from the storage medium.
Abstract:
An apparatus for calibrating a noise predictive filter includes a noise-predictive filter operable to filter digital data samples to yield filtered data samples, a calibration circuit operable to calculate tap coefficients for the noise-predictive filter based at least in part on the digital data samples, and a gating circuit operable to select a portion of the digital data samples for use by the calibration circuit in calculating the tap coefficients.
Abstract:
The present inventions are related to systems and methods for data processing, and more particularly to systems and methods for detecting patterns in a data stream.
Abstract:
Embodiments are related to systems and methods for data processing, and more particularly to systems and methods for calibration during data processing. As an example, a data processing system is discussed that includes a sample averaging circuit operable to average digital samples from an analog to digital converter circuit over multiple instances of an analog input to yield an X-average output, and a selector circuit operable to select one of the digital samples or the X-average output as a processing output.
Abstract:
The present invention is a programmable QC LDPC encoder for encoding user data. The encoder may be configurable for implementation with a read channel. The encoder may include a plurality of barrel shifter circuits. The barrel shifter circuits are configured for generating a plurality of parity bits based on interleaved user bits received by the encoder. The barrel shifter circuits are further configured for outputting the parity bits. The encoder may further include an encoder interleaver memory. The encoder interleaver memory may be communicatively coupled with the barrel shifter circuits and may receive the parity bits output from the barrel shifter circuits. The encoder interleaver may be configured for interleaving the parity bits. Further, the encoder may be configured for outputting the interleaved parity bits to a multiplexer. The barrel shifter circuits may generate the plurality of parity bits via an encoding algorithm: p=u*GT.
Abstract:
Systems and methods for data processing particularly related local iteration randomization in a data decoding circuit. In some cases a data processing system may include: a layered data decoding circuit, a value generator circuit, and a selector circuit. The layered data decoding circuit is configured to iteratively apply a data decoding algorithm up to a selected number of times to a decoder input to yield a decoded output in accordance with a layer order. The value generator circuit is operable configured to generate an adjusted number of times where the adjusted number of times is less than a default number of times. The selector circuit is operable configured to select one of the default number of times and the adjusted number of times as the selected number of times.
Abstract:
A memory interleaving apparatus includes first and second interleavers. The first interleaver selectively interleaves information stored in a first memory in response to a sector select signal. The second interleaver selectively interleaves information stored in a second memory in response the sector select signal. The first interleaver is coupled with the second interleaver. A memory interleaving system includes an interleaver and a storage device. The interleaver is associated with a first sector size and a second sector size. The interleaver selectively interleaves information stored in a first memory and/or a second memory in response to a sector select signal. The storage device selectively provides the first masking seed and/or a second masking seed to the interleaver in response to the sector select signal. Corresponding methods are also disclosed.
Abstract:
Embodiments of the present inventions are related to systems and methods for decoding data in an LDPC decoder with flexible saturation levels for variable node probability values.