Abstract:
The index of refraction of a liquid is measured using an optical fiber refractometer having a light transmitting optical fiber by immersing a portion of the optical fiber in the liquid and launching light into one end of the optical fiber at a selected non-zero launch angle with respect to the fiber axis. Light transmitted through the optical fiber is detected at the other end of the optical fiber and a determination is made of the index of refraction of the liquid in accordance with the detected light and the selected non-zero launch angle. By varying the launching angles of the light the range of the refractometer is increased. The light transmitting optical fiber is provided with a region having at least one tapered portion for further increasing the range of the refractometer. The tapered portion of the optical fiber is disposed between a refractive end of the optical fiber and the light source for providing single-ended operation.
Abstract:
An optical system is disclosed wherein light is transmitted through fibertic members orthogonally configured in a triaxial arrangement for measuring the magnetic field vector preset in the environment. In one preferred embodiment, a set of three fiber-optic coils positioned coaxially along respective orthogonal axes and having predetermined lengths and diameters are coupled to a source of polarized light for transmitting the light subject to Faraday rotation of its plane of polarization. In another preferred embodiment, light, not necessarily polarized. is transmitted along respective orthogonal axes through a set of three bifurcated fiber-optic cables each formed having a reference branch and a substantially equilaterally sensor branch on which a magnetostrictive material is intimately connected to produce optical path length changes related to the magnetic field component along the respective axes. Photodetectors are used in both embodiments to produce current signals indicative of characteristic changes in the transmitted light, and the current signals are digitally processed to provide magnitude and directional information regarding the magnetic field vector.
Abstract:
Apparatus is provided to detect electromagnetic radiation, in which a radion-absorbing element is disposed on a short section of an optical waveguide to provide a thermal interface therebetween. Radiation is absorbed by the element, which thereby heats the waveguide, causing it to change its optical pathlength in proportion to the radiation absorbed. Interferometer apparatus is connected to measure this change in optical pathlength as a change in the interference condition. This device is highly sensitive and can be operated at room temperature.
Abstract:
A sensor is disclosed in which light is launched into the core of a singlode optical fiber having a tapered-down or narrow waist region between 2 tapers along an internal portion of the length thereof. The fiber is positioned so that a physical effect to be measured bends the fiber in the narrow waist region. The intensity of the light exiting from the core of the fiber is measured and the displacement is determined in accordance with the measured intensity. The narrow waist region of the fiber has a V.sub.co parameter of less than 1. A bellows which changes dimension with a change in pressure may be coupled to the fiber to bend it in the waist region in proportion to pressure changes. A magnetostrictive element which changes dimension with changing magnetic field may be coupled to the narrow waist region so that a change in dimension causes a displacement which bends the fiber.
Abstract:
Temperature compensation of an optical fiber interferometer is achieved by wrapping and bonding one fiber arm transversely about the length of a magnetostrictive rod which is sensitive only to the magnetic field component along its length. The other fiber arm is wrapped and bonded about two generally semicircular caps, attached to either end of the rod, in a direction along the longitudinal axis of the rod.
Abstract:
The frequency of a laser beam can be changed by directing the laser beam through a crystal that has paraelectric and ferroelectric states, above and below a Curie transition temperature, respectively. The crystal is maintained at a constant temperature slightly above its Curie transition temperature when no change in the frequency of the laser beam is desired; and a voltage is applied across the crystal to drive it from its paraelectric into its ferroelectric state when a relatively large change in the frequency of the laser beam is desired.
Abstract:
A sensor and method are disclosed for determining if a region, defined by two end points, in a structure has exceeded a predetermined amount of strain. The sensor has an optical waveguide which has two ends for receiving and emitting light and which is fixable at two locations thereon to respective ones of the end points to define a sensing region therebetween. The sensing region has a first portion with a first length and a first cross-sectional area, and a second portion with a second length and a second cross-sectional area which is smaller than the first cross-sectional area. The lengths and cross-sectional areas are sized so that the optical waveguide has a strain failure point equal to the predetermined amount of strain. The lengths and cross-sectional areas are approximately sized according to the formula R=.alpha.+1/ (.alpha./.beta.+1), wherein R=the ratio of the amount of strain in the second portion which will cause the optical waveguide to fail to the predetermined amount of strain in the structure, .alpha.=the ratio of the length of the first portion to the length of the second portion, and .beta.=the ratio of the cross-sectional area of the first portion to the cross-sectional area of the second portion.
Abstract:
A physical property of a liquid or of any optical fiber is measured using optical fiber interferometer. A conductive material is disposed upon the surface of a region of a light transmitting optical fiber and the region having the conductive material is disposed in the liquid. Light energy is applied to one end of the fiber and transmitted light is received at the other end of the fiber. Electrical energy is applied to the conductive material disposed upon the surface of the fiber to heat the region of the fiber and cause a change in the optical path length of the light transmitted through the fiber. The physical property of the liquid or optical fiber is determined in accordance with the change in the optical path length of the received light caused by applying the electrical energy to the conductive material. A series of short energy pulses is provided and the average phase change is determined. The conductive material is gold and it encircles the fiber. The gold may be disposed on the jacket of the fiber or the jacket may be removed before disposing the gold.
Abstract:
The phase of light passing through an optical waveguide is modulated by aying electric current to heat the waveguide and thereby alter the length and refractive index thereof. An application for the thermal phase modulation concept is provided in a Mach-Zehnder interferometer.
Abstract:
A magnetic field gradiometer includes a geometric arrangement of fiber op sensors through which light from a single frequency laser is transmitted. Having a pair of single-mode optical fibers, each of which are coupled to a magnetostrictive element, each sensor is formed in the manner of a Mach-Zehnder interferometer which is oriented to detect the spatial variation in a particular orthogonal component of the magnetic field by phase comparison of the light transmitted through its respective pair of fibers.