Abstract:
The present invention is a diaphragm-fiber optic sensor (DFOS), interferometric sensor. This DFOS is based on the principles of Fabry-Perot and Michelson/Mach-Zehnder. The sensor is low cost and is designed with high efficiency, reliability, and Q-point stability, fabricated using MEMS (micro mechanic-electrical system) technology, and has demonstrated excellent performance. A DFOS according to the invention includes a cavity between two surfaces: a diaphragm made of silicon or other material with a rigid body (or boss) at the center and clamped along its edge, and the endface of a single mode optic fiber. By utilizing MEMS technology, the gap width between the diaphragm and the fiber endface is made accurately, ranging from 1 micron to 10 microns. To stabilize the Q-point of the DFOS when in use as an acoustic sensor, a system of microchannels is built in the structure of the diaphragm so that the pressure difference on two sides of the diaphragm is kept a constant, independent of the hydraulic pressure and/or low frequency noise when the device is inserted in liquid mediums.
Abstract:
The present invention is a diaphragm-fiber optic sensor (DFOS), interferometric sensor. This DFOS is based on the principles of Fabry-Perot and Michelson/Mach-Zehnder. The sensor is low cost and is designed with high efficiency, reliability, and Q-point stability, fabricated using MEMS (micro mechanic-electrical system) technology, and has demonstrated excellent performance. A DFOS according to the invention includes a cavity between two surfaces: a diaphragm made of silicon or other material with a rigid body (or boss) at the center and clamped along its edge, and the endface of a single mode optic fiber. By utilizing MEMS technology, the gap width between the diaphragm and the fiber endface is made accurately, ranging from 1 micron to 10 microns. To stabilize the Q-point of the DFOS when in use as an acoustic sensor, a system of microchannels is built in the structure of the diaphragm so that the pressure difference on two sides of the diaphragm is kept a constant, independent of the hydraulic pressure and/or low frequency noise when the device is inserted in liquid mediums.
Abstract:
Devices and techniques for monitoring spectrum of light. For example, a fiber spectral monitoring device and associated technique are described for monitoring spectral information in light based on an interferometer design.
Abstract:
Low coherence interferometer apparatus for investigation of a sample (15), in particular for multidimensional imaging, having an interferometer configuration (2) comprising a low coherence light source, a probe head (9) having a light exit opening (16) for irradiating light into the sample, an optical coupler, a reference reflector and a detector (13). The optical paths between the elements of the interferometer configuration (2) form interferometer arms. The optical coupler and the reference arm of the interferometer configuration (2) are integrated into a common optical chip (28). In addition to the reference reflector (11), the reference arm comprises a deflection reflector (33) formed on an end surface (35) of the optical chip (28) in such a manner that the reference light is cross-coupled between a first light guide (10a) forming a first portion of the reference arm (10) and a second light guide (10b) forming a second portion of the reference arm (10).
Abstract:
An integrated optical device for measuring the refractive index of a fluid comprises a light guide formed on a substrate and having a guiding layer for carrying light beams, inserted between a lower layer and an upper layer having refractive indices below that of the guiding layer. The device includes an interaction measurement zone of the light guide for coming into contact with the fluid, the upper layer at the measurement zone having a thickness less than the penetration distance of the evanescent wave of the guided light beam. Outside the interaction zone, that upper layer has a thinckness greater than the penetration distance of the same evanescent beam. The device also has an interferometric optical system at least partly formed in the light guide and having a reference optical circuit and a measurement optical circuit including the measurement zone, for measuring the phase shift introduced by an effective index change of the guided mode due to the fluid.
Abstract:
An interferometric system includes a polarization separation element (10), a first polarization conversion element (11), a Mach-Zehnder interferometer (2) including a first (4) and second (5) arms connected to one another by a first (6) and second (7) ends in order for a first and second beams (20, 21) having the same polarization to pass through the interferometer in a reciprocal manner in opposite directions of propagation, respectively, so as to form a first and second interferometric beam (22, 23), a second polarization conversion element (11) for obtaining an interferometric beam (24), the polarization of which is converted, a polarization-combining element (10), and a detection element (8) suitable for detecting an output beam (25).
Abstract:
The present invention provides a method and apparatus for monitoring optical signals with an expand frequency resolution. The invention permits high-resolution measurements of optical signal spectrums while retaining wide bandwidth operation through appropriate control circuitry. An interferometer having a periodic frequency response formed of equally spaced narrow-band peaks is used to sweep the entire signal spectrum. The interferometer frequency response is incrementally tuned in cycles so that each of its frequency response peaks cyclically scans a particular spectral band of the signal spectrum. During each cycle, the interferometer isolates multiple,spectrally resolved portions of the optical signal spectrum where each portion originates frog different spectral band. In this way, a high-resolution measurement of the entire signal spectrum can be obtained. The invention may be network protocol independent and can be incorporated into an optical spectrum analyzer or directly into any optical terminal. The invention can be used for signal spectrum monitoring applications including link quality monitoring (LQM) in optical communications networks to monitor various transmission parameters such as such as carrier wavelengths, optical signal-to-noise ratios (SNR), amplified spontaneous emissions (ASE), noise levels, optical non-linearities or other signal baseband information such as data rates and formats.
Abstract:
Low coherence interferometer apparatus for investigation of a sample (15), in particular for multi-dimensional imaging, having an interferometer configuration (2) comprising a low coherence light source, a probe head (9) having a light exit opening (16) for irradiating light into the sample, an optical coupler, a reference reflector and a detector (13). The optical paths between the elements of the interferometer configuration (2) form interferometer arms. The optical coupler and the reference arm of the interferometer configuration (2) are integrated into a common optical chip (28). In addition to the reference reflector (11), the reference arm comprises a deflection reflector (33) formed on an end surface (35) of the optical chip (28) in such a manner that the reference light is cross-coupled between a first light guide (10a) forming a first portion of the reference arm (10) and a second light guide (10b) forming a second portion of the reference arm (10).
Abstract:
Apparatus is provided to detect electromagnetic radiation, in which a radion-absorbing element is disposed on a short section of an optical waveguide to provide a thermal interface therebetween. Radiation is absorbed by the element, which thereby heats the waveguide, causing it to change its optical pathlength in proportion to the radiation absorbed. Interferometer apparatus is connected to measure this change in optical pathlength as a change in the interference condition. This device is highly sensitive and can be operated at room temperature.
Abstract:
An integrated optical transducer includes a single mode input optical waveguide, two single mode optical waveguide branches having different physical lengths, and a single mode output optical waveguide. When used as a transducer, the optical path lengths of the waveguide branches are dependent on the physical quantity measured. A plurality of such transducer elements may be used jointly to provide a binary output of high sensitivity and wide range of measurement. The waveguide element may also be used as an optical pulse source.