Abstract:
A handle mechanism for operating a vehicle door latch has a handle lever for operating the latching mechanism of a vehicle door latch and a button handle for operating the locking mechanism of the vehicle door latch. The handle mechanism includes a child security lock that disables the handle mechanism so that it cannot unlatch the vehicle door latch. The child security lock is engaged by the handle lever and disengaged by manipulating the handle lever and the button handle in a predetermined sequence.
Abstract:
An adjustable pedal mechanism for automotive vehicles utilizes a slave lever pivoted on a conventionally located laterally extending front pivot and actuated by a pedal lever on a parallel rear pivot located behind and below the front pivot. The levers are connected by an adjustable link lying generally parallel with the plane of the front and rear pivots to form a parallelogram linkage with the link side being of variable length to vary the initial angular position of a foot pedal at the lower end of the pedal lever. The slave lever connects with an actuator rod for actuating a vehicle device such as a brake or clutch and is applied by forward motion of the foot pedal acting through the pedal lever and adjustable link to the slave lever which moves the actuator rod. The lowered rearward location of the pedal lever allows a greater variation of the pedal position without excessively raising the pedal height while the parallelogram linkage arrangement maintains pedal actuating travel essentially constant at all locations within the range of adjustment positions. A preferred embodiment includes powered adjustment of a ballscrew for adjusting the link.
Abstract:
A vehicle door cinching apparatus for assisting the final closing motion of a sliding vehicle door includes an electromagnet, a ferrous metal plate, a cinch drive and a controller. The electromagnet mounts on either an outer periphery of a vehicle sliding door or an inner periphery of a vehicle sliding door frame that's shaped to receive the sliding door as the door moves along a final inward cinching portion of a door path to a final closed position within the door frame. The plate is supported on the other of the outer periphery of the door and the inner periphery of the door frame in a position where the plate can magnetically engage the electromagnet when the door is disposed along the final cinching portion of the door path. Whichever of the plate and electromagnet is supported on the inner periphery of the door frame is also supported for lateral movement in a direction generally parallel to the cinching portion of the door path. According to the method, the cinch drive moves whichever of the electromagnet and plate is supported on the inner periphery of the door frame to drive the door along the final cinching portion of the door path and into the final closed position. The controller de-energizes the electromagnet and releases the door from the cinching apparatus once the door has reached its final closed position.
Abstract:
A seat restraint tensioner for a seat restraint system in a vehicle includes a housing for operative connection to vehicle structure and a movable piston disposed in the housing. The seat restraint tensioner also includes a gas generator operatively connected to the housing for expelling a gas to move the piston. The piston includes a passageway extending therethrough to control a rate of stroke of the piston when the gas is generated to apply a force for pulling-down belt webbing of the seat restraint system.
Abstract:
A vehicle pivoting closure assembly has a concealed power actuator remotely operated by a controller to open and close a closure or liftgate. A hinge member of the power actuator is engaged pivotally to a vehicle structure about a hinge axis, and rigidly to the closure. An armature extends pivotally from an elongated linear moving rack about a rack pivot axis and to the hinge member. The armature also pivotally engages the hinge member about a secondary pivot axis disposed parallel to the hinge axis and rack pivot axis. The rack is driven by a pinion gear train powered by a motor through a clutch. The hinge, the rack, the gear train and the motor are all supported by a reinforcement tray forming a modular engaged to the vehicle structure. The tray isolates the extreme dynamic loads placed upon the hinge by the motor, thereby eliminating the need to further reinforce the vehicle structure.
Abstract:
A tension sensing switch assembly for a seat restraint system in a vehicle includes a housing for operative connection to the seat restraint system and a spring at least partially disposed in the housing for operatively cooperating with vehicle structure. The tension sensing switch assembly also includes a switch disposed in the housing and cooperable with the spring to indicate a first tension level and a second tension level in the seat restraint system when the spring is deflected.
Abstract:
An acceleration sensor assembly for a restraint retractor of a seat restraint system in a vehicle includes an acceleration sprocket operatively connected to the restraint retractor. The acceleration sensor assembly also includes an acceleration pawl cooperating with the acceleration sprocket to operatively cause lock up of the restraint retractor. The acceleration sensor assembly includes a mass member cooperating with the acceleration pawl to move the acceleration pawl when an acceleration force is present. The acceleration sensor assembly further includes an electromagnet assembly cooperating with the mass member to hold the mass member in a predetermined position until the acceleration force exceeds a predetermined value and the mass member moves to actuate the acceleration pawl to engage the acceleration sprocket to operatively cause lock up the restraint retractor and prevent unwinding of a belt from the restraint retractor.
Abstract:
A vehicle door cinching apparatus for assisting the final closing motion of a sliding vehicle door includes an electromagnet, a ferrous metal plate, a cinch drive and a controller. The electromagnet mounts on either an outer periphery of a vehicle sliding door or an inner periphery of a vehicle sliding door frame that's shaped to receive the sliding door as the door moves along a final inward cinching portion of a door path to a final closed position within the door frame. The plate is supported on the other of the outer periphery of the door and the inner periphery of the door frame in a position where the plate can magnetically engage the electromagnet when the door is disposed along the final cinching portion of the door path. Whichever of the plate and electromagnet is supported on the inner periphery of the door frame is also supported for lateral movement in a direction generally parallel to the cinching portion of the door path. According to the method, the cinch drive moves whichever of the electromagnet and plate is supported on the inner periphery of the door frame to drive the door along the final cinching portion of the door path and into the final closed position. The controller de-energizes the electromagnet and releases the door from the cinching apparatus once the door has reached its final closed position.
Abstract:
A drive apparatus, in particular for the automatic actuation of a sliding door of a motor vehicle, comprising a fast running motor, the motor shaft of which is connected to a transmission with a large step-down ratio, the transmission having a first gear wheel which can be secured against rotation, via a releasable blocking device, and a second rotatable gear wheel which is rotationally fixedly connected to an output drive shaft and which is rotatable relative to the first gear wheel by the rotation of the motor when the first gear wheel is blocked, with the number of teeth of the first gear wheel only differing by a few teeth from the number of teeth of the second gear wheel and with the large step-down ratio being determined by this difference of the tooth numbers. By releasing the blocking device, the step-down ratio of the transmission changes. In particular a step-down ratio of 1:1 results. The transmission is thereby capable of being driven in reverse, so that a manual actuation of the sliding door of a motor vehicle is possible, without the requirement for a releasable clutch device between the sliding door and the drive apparatus.
Abstract:
A window regulator mechanism for raising and lowering a window that slides up and down in a hollow closure. The window regulator mechanism includes a base plate that supports a tape drive that pulls the window up and pulls the window down. The tape wraps around upper and lower rollers that rotate on axes that are substantially parallel to the length of the closure. Two slack take-up devices for the tape are disclosed. An alternate window regulator mechanism drives the tape with conformation and does not need any slack take-up.