摘要:
A method for manufacturing an acoustical stack for use within an ultrasound transducer comprises using a user defined center operating frequency of an ultrasound transducer that is at least about 2.9 MHz. A piezoelectric material and a dematching material are joined with an assembly material to form an acoustical connection therebetween. The piezoelectric material has a first acoustical impedance and *at least one of* an associated piezoelectric rugosity (Ra) and piezoelectric waviness (Wa). The dematching material has a second acoustical impedance that is different than the first acoustical impedance and at least one of an associated dematching Ra and dematching Wa. The piezoelectric and dematching materials have an impedance ratio of at least 2. The assembly material has a thickness that is based on the center operating frequency and at least one of the piezoelectric Ra, piezoelectric Wa, dematching Ra and dematching Wa.
摘要:
A multi-focus probe that includes a motor communicatively coupled with a lead screw and configured to turn the lead screw about a lengthwise axis of the lead screw, wherein the lead screw includes a length having threads. The probe also includes a lead-screw nut positioned about the lead screw such that the lead-screw nut engages the threads and such that the lead-screw nut and the lead screw can move relative to one another via the threads, a transducer configured to move vertically with the lead screw, and an enclosure surrounding the transducer, wherein the enclosure includes a probe face configured to hold fluid and engage a wave emission target such that waves from the transducer can enter the target. Further, the probe includes a capture feature capable of engaging the lead-screw nut such that the lead-screw nut is vertically fixed relative to the probe face and such that the lead screw moves away from the probe face when rotating within the lead-screw nut in a first direction and moves toward the probe face when rotating within the lead-screw nut in a second direction opposite to the first direction while the lead-screw nut is engaged by the capture feature.
摘要:
A method of guiding a clinician using an image display device associated with an imaging system is disclosed herewith. The method comprises: obtaining patient information along with relevant clinical procedure through a user interface; and selecting a predefined workflow and at least one device setting parameter from an information library. The method further comprises: communicating the selected workflow including the steps in the workflow to the clinician in real time using the image display system, upon initiating the clinical procedure; and configuring the imaging system using the selected device setting parameter to perform the selected workflow.
摘要:
A modular sensor assembly and methods of fabricating a modular sensor assembly are provided. The modular sensor assembly includes a sensor array coupled to an electronics array in a stacked configuration. The sensor array comprises a plurality of sensor modules, each comprising a plurality of sensor sub-arrays. The electronics array comprises a plurality of integrated circuit modules, each comprising a plurality of integrated circuit chips. The sensor modules may be coupled to the electronics modules via flip chip technology.
摘要:
An automated method for detecting a disease state is presented. The method includes identifying a bone surface in one or more image data sets, wherein the one or more data sets correspond to a region of interest in an object of interest. Furthermore, the method includes segmenting a joint capsule region corresponding to the one or more image data sets based on a corresponding identified bone surface. In addition, the method includes analyzing the segmented joint capsule region to identify the disease state. Systems and non-transitory computer readable medium configured to perform the automated method for detecting a disease state are also presented.
摘要:
An ultrasound acoustic assembly includes a number of ultrasound acoustic arrays, each array comprising an acoustic stack comprising a piezoelectric layer assembled with at least one acoustic impedance dematching layer and with a support layer. The acoustic stack defines a number of dicing kerfs and a number of acoustic elements, such that the dicing kerfs are formed between neighboring ones of the acoustic elements. The dicing kerfs extend through the piezoelectric layer and through the acoustic impedance dematching layer(s) but extend only partially through the support layer. The ultrasound acoustic assembly further includes a number of application specific integrated circuit (ASIC) die. Each ultrasound acoustic array is coupled to a respective ASIC die to form a respective acoustic-electric transducer module. Methods of manufacture are also provided.
摘要:
An automated method for detecting a disease state is presented. The method includes identifying a bone surface in one or more image data sets, wherein the one or more data sets correspond to a region of interest in an object of interest. Furthermore, the method includes segmenting a joint capsule region corresponding to the one or more image data sets based on a corresponding identified bone surface. In addition, the method includes analyzing the segmented joint capsule region to identify the disease state. Systems and non-transitory computer readable medium configured to perform the automated method for detecting a disease state are also presented.
摘要:
An ultrasonic monitoring system is formed with a probe unit. In one example an array of transducer cells is arranged in rows and columns formed along a first plane with a first pitch along a first direction. An integrated circuit including an array of circuit cells is formed along a second plane parallel to the first plane. The circuit cells are spaced apart along the first direction at a second pitch smaller than the first pitch. A first of the transducer cells is vertically aligned, along a direction normal to one of the planes, with a first of the circuit cells and having a connection thereto. A second of the transducer cells is offset from vertical alignment with respect to the position of a second circuit cell so as to not overlie the second circuit cell. A connection subsystem is positioned between the array of transducer cells and the array of circuit cells, configured to form connection of the first transducer cell to the first circuit cell and connection of the second transducer cell with the second circuit cell.
摘要:
An ultrasound monitoring system. In one embodiment, an array of transducer cells is formed along a first plane and an integrated circuit structure, formed along a second plane parallel to the first plane, includes an array of circuit cells. A connector provides electrical connections between the array of transducer cells and the array of circuit cells, and an interconnection structure is connected to transfer signals between the circuit cells and processing and control circuitry. The integrated circuit structure includes a semiconductor substrate and a plurality of conductive through-die vias formed through the substrate to provide Input/Output (I/O) connections between the transducer cells and the interconnection structure. The monitoring system may be configured as an imaging system and the processing and control circuitry may be external to the probe unit.
摘要:
An ultrasonic monitoring system is formed with a probe unit. In one example an array of transducer cells is arranged in rows and columns formed along a first plane with a first pitch along a first direction. An integrated circuit including an array of circuit cells is formed along a second plane parallel to the first plane. The circuit cells are spaced apart along the first direction at a second pitch smaller than the first pitch. A first of the transducer cells is vertically aligned, along a direction normal to one of the planes, with a first of the circuit cells and having a connection thereto. A second of the transducer cells is offset from vertical alignment with respect to the position of a second circuit cell so as to not overlie the second circuit cell. A connection subsystem is positioned between the array of transducer cells and the array of circuit cells, configured to form connection of the first transducer cell to the first circuit cell and connection of the second transducer cell with the second circuit cell.