Abstract:
A client network device includes a physical-layer device, a parameter module, an adjusting module, and a power management module. The physical-layer device, during each client traffic window that occur within a predetermined period, (i) transmits, over a network, a request signal from the client network device to discover other network devices in the network, and (ii) receives, from one or more of the other network devices, corresponding responses to the request signal. The parameter module monitors a first parameter of the client network device. The adjusting module adjusts a second parameter based on the first parameter. The second parameter indicates a number of the client traffic windows to occur within the predetermined period. The power management module transitions the client network device from an active mode to a sleep mode between consecutive ones of the number of the client traffic windows that occur within the predetermined period.
Abstract:
A first device transmits a first packet to a second device, the first packet including a first value indicative of a priority for the first device to become a master in a peer-to-peer (P2P) wireless communication network. The first device receives a second packet transmitted by the second device, wherein the second packet includes a second value indicative of a priority for the second device to become the master in the P2P wireless communication network. The first device compares the first value with the second value, and determines whether the first device is to become the master or a client in the P2P wireless communication network based on the comparison of the first value with the second value.
Abstract:
A system and method are disclosed for decreasing the amount of power consumed by a data transmitter in a wireless device when transmitting media (audio and/or visual) data or other data received from a media source or other source. A transmission circuit, such as an application specific integrated circuit (ASIC) or WLAN chip, is configured to deactivate the data transmitter for a deactivation interval and aggregate the media data (or other consistent-rate data) in a buffer while the data transmitter is deactivated. At the end of the deactivation interval, the data transmitter is activated and the aggregated data packets are transmitted. The data transmitter may be repetitively deactivated and activated for transmitting the data. The deactivation interval may be based on the data sampling rate, the transmission rate of the data transmitter, the capacity of the buffer, and/or other factors.
Abstract:
A base station including a receiver, a processor, and a transmitter. The receiver is configured to receive, during a predetermined period, information from a plurality of stations. The processor is configured to estimate, based on the information received from the plurality of stations during the predetermined period, bandwidth requirement of each of the plurality of stations. The processor is configured to allocate, based on the estimated bandwidth requirement of each of the plurality of stations, a number of timeslots to each of the plurality of stations in which to communicate with the base station. Durations of the timeslots allocated to the plurality of stations are based on the estimated bandwidth requirement of each of the plurality of stations. The transmitter is configured to transmit a message including (i) identifiers identifying each of the plurality of stations and (ii) the number of timeslots allocated to each of the plurality of stations.
Abstract:
In response to determining that a Bluetooth inquiry phase or a Bluetooth paging phase is beginning, a power save (PS) mode signal is sent from a first device to a second device via a wireless local area network (WLAN) communication link, wherein the PS mode signal indicates that the first device is in a WLAN PS mode. A PS poll signal is sent from the first device to the second device via the WLAN communication link in a gap between Bluetooth inquiry phase message transmissions during the Bluetooth inquiry phase or between Bluetooth paging phase message transmissions during the Bluetooth paging phase.
Abstract:
Methods and apparatus for switching transmission channels that include monitoring a number of packets within a transmitter buffer of a transmitter, determining that the number of packets within the transmitter buffer exceeds a pre-determined threshold, and changing a transmission channel used by the transmitter for transmission based at least upon the number of packets within the transmitter buffer exceeding a pre-determined threshold.