Abstract:
An example embodiment includes an apparatus. The apparatus includes piconet logic for establishing a multi-level piconet hierarchy having a top level piconet and a lower level piconet(s). The top level piconet includes a master device and master controller(s). The lower level piconet includes master controllers(s) and sub-controller(s). The apparatus includes time division multiplexing logic to solicit and control aggregated communication with master controllers. The aggregated communication comprises data from the master controller and data from a sub-controller(s).
Abstract:
In response to determining that a Bluetooth inquiry phase or a Bluetooth paging phase is beginning, a power save (PS) mode signal is sent from a first device to a second device via a wireless local area network (WLAN) communication link, wherein the PS mode signal indicates that the first device is in a WLAN PS mode. A PS poll signal is sent from the first device to the second device via the WLAN communication link in a gap between Bluetooth inquiry phase message transmissions during the Bluetooth inquiry phase or between Bluetooth paging phase message transmissions during the Bluetooth paging phase.
Abstract:
A coexistence system including a first transceiver module, an interface, a second transceiver module, and an arbitration module. The first transceiver module, in a first network device, is configured to generate at least one first request signal. The first transceiver module operates according to a first wireless communication standard. The at least one first request signal requests transmission or reception for the first transceiver module. The interface is configured to generate a first priority signal based on the at least one first request signal. The first priority signal indicates a first priority level of first data signals corresponding to the at least one first request signal. The second transceiver module, in the first network device, is configured to (i) generate at least one second request signal, and (ii) generate a second priority signal. The second transceiver module operates according to a second wireless communication standard. The at least one second request signal requests transmission or reception for the first transceiver module. The second priority signal indicates a second priority level of second data signals corresponding to the at least one second request signal. The arbitration module is configured to (i) based on the first priority level and the second priority level, arbitrate the at least one first request signal and the at least one second request signal, and (ii) based on the arbitration of the at least one first request signal and the at least one second request signal, selectively connect antennas to the first transceiver module and the second transceiver module in one of multiple configurations.
Abstract:
A coexistence system including a first transceiver module in a first network device, generating a first request signal that requests transmission or reception for the first transceiver module, and operating according to a first wireless communication standard. An interface, based on the first request signal, generates a first priority signal, which indicates a first priority level of first data signals. A second transceiver module is in the first network device and generates a second request and priority signals. The second transceiver module operates according to a second wireless communication standard. The second request signal requests transmission or reception for the first transceiver module. The second priority signal indicates a second priority level of second data signals. An arbitration module (i) based on the first and second priority levels, arbitrates the first and second request signals, and (ii) based thereon, selectively connects antennas to the first and second transceiver modules.
Abstract:
In response to determining that a Bluetooth inquiry phase or the Bluetooth paging phase will begin, a power save indicator signal is sent from a first communication device to a second communication device prior to a start of the Bluetooth inquiry phase or the Bluetooth paging phase. A gap between a first Bluetooth communication slot and a second Bluetooth communication slot is determined, and a time period within the gap is determined, where an end of the time period occurs at a defined amount of time prior to a start of the second Bluetooth communication slot. During the time period, one or more power save poll messages are sent from the first communication device to the second communication device, each first power save poll message prompting the second communication device to transmit a respective first WLAN packet to the first communication device.
Abstract:
Improvements associated with determining a location of a station device are described. According to one improvement, a method is performed by a network device. The method includes receiving a response packet from a station device, multiple times, as received signals by switching between a plurality of antennas of the network device during reception of each occurrence of the response packet. The received signals are converted to corrupted orthogonal samples. The response packet is received from the station device a final time as a final response packet via a single antenna of the plurality of antennas. Ideal orthogonal samples are re-generated based at least in part on the final response packet. Signal phase information, embedded in the corrupted and ideal orthogonal samples, is converted into estimated locations of the station device.