Abstract:
A method of small cell discovery and RSRP/RSRQ measurements in OFDM/OFDMA systems is proposed. A discovery reference signal (DRS) with low transmission frequency is introduced to support small cell detection within a short time, multiple small cell discovery, and accurate measurement of multiple small cells. The DRS consists of one or multiple reference signal types with the functionalities including timing and frequency synchronization, cell detection, RSRP/RSSI/RSRQ measurements, and interference mitigation. RE muting is configured for the DRS to reduce interference level from data to DRS for discovery and RSRP/RSRQ measurements for small cells.
Abstract:
A method of small cell discovery and RSRP/RSRQ measurements in OFDM/OFDMA systems is proposed. A discovery reference signal (DRS) with low transmission frequency is introduced to support small cell detection within a short time, multiple small cell discovery, and accurate measurement of multiple small cells. The DRS consists of one or multiple reference signal types with the functionalities including timing and frequency synchronization, cell detection, RSRP/RSSI/RSRQ measurements, and interference mitigation. RE muting is configured for the DRS to reduce interference level from data to DRS for discovery and RSRP/RSRQ measurements for small cells.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE receives a CORESET configuration specifying one or more properties of a first CORESET. The UE also determines time and frequency resource elements of the first CORESET based on the one or more properties. The UE performs blind decoding on down-link control channel candidates in a search space carried by the first CORESET to obtain a down-link control channel.
Abstract:
Various solutions for wake-up signal and preamble design for mobile communications are described. An apparatus, while in a first mode of operation, receives a wake-up signal (WUS) from a network. In response to receiving the WUS, the apparatus switches to a second mode of operation from the first mode of operation. The apparatus then detects a preamble in downlink (DL) transmissions from the network. In response to detecting the preamble, the apparatus monitors a physical downlink control channel (PDCCH) to check for an uplink (UL) transmission grant for the apparatus from the network.
Abstract:
In one novel aspect, a plurality of synchronization signal (SS) anchors within a block of a contiguous spectrum is configured in a wireless network. Each SS anchor is a primary SS anchor or a secondary SS anchor. The UE performs an initial access by detecting a first primary SS anchor and receives one or more virtual carrier configurations with corresponding SS anchors within the block of the contiguous spectrum. In another novel aspect, the UE performs an initial access through a first RF band with a first bandwidth and a first center frequency, receives a switching signal to switch from the first RF band to a second RF band with a second bandwidth and a second center frequency, the second bandwidth is different from the first bandwidth, and performs a RF bandwidth adaptation from the first RF band to the second RF band based on the adaptation signal.
Abstract:
In one novel aspect, a plurality of synchronization signal (SS) anchors within a block of a contiguous spectrum is configured in a wireless network. Each SS anchor is a primary SS anchor or a secondary SS anchor. The UE performs an initial access by detecting a first primary SS anchor and receives one or more virtual carrier configurations with corresponding SS anchors within the block of the contiguous spectrum. In another novel aspect, the UE performs an initial access through a first RF band with a first bandwidth and a first center frequency, receives a switching signal to switch from the first RF band to a second RF band with a second bandwidth and a second center frequency, the second bandwidth is different from the first bandwidth, and performs a RF bandwidth adaptation from the first RF band to the second RF band based on the adaptation signal.
Abstract:
Methods and apparatus are provided for transmission preemption and its indication. In one novel aspect, the UE receives a downlink resource assignment and determines whether an ultra-low latency (ULL) alert signal exists, wherein the ULL alert signal indicates a set of soft bits are overridden. The UE discards the set of soft bits from the overridden resources upon determining the ULL alert signal exists. In one embodiment, the ULL alert signal resides in the assignment subframe, and the overridden soft bits are in the assignment subframe. The alert timing for the ULL alert signal is preconfigured. In another embodiment, the ULL alert signal resides in a subframe that is right after the assignment subframe. The alert signal is enabled through an enabling of an enhanced mobile broadband and ULL service. The alter signal indicates a superset of the overridden soft bits or part of the overridden soft bits.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. In accordance with the method, the UE receives symbols in a time slot. The time slot includes a control region and a data region. The UE further determines a down link data channel specific to the UE carried by the received symbols in the data region. The down link data channel is provided on at least one range of frequencies. The UE further determines that one or more of the received symbols on the at least one range of frequencies and in the control region are a part of the down link data channel.
Abstract:
An UE receives a downlink control channel. The UE also receives an aggregation indication indicating that a downlink control channel contains downlink control information (DCI) for one or more resource locations of the UE. The UE further determines that a payload size selected from a list of payload sizes is a size of a payload of the downlink control channel. The UE further determines an entry size of each entry of a number of DCI entries that are included in the payload and are corresponding to the one or more resource locations based on downlink transmission parameters at the one or more resource locations. The UE also locates from the payload, based on the selected payload size and the entry sizes of the number of DCI entries, bits of each entry of the number of DCI entries.
Abstract:
Various solutions for coordination information transmission with respect to user equipment (UE) and network apparatus in mobile communications are described. A UE may receive downlink control information comprising coordination information from a first node of a wireless network. The coordination information may comprise interference management information. The UE may copy the coordination information and embed the coordination information in uplink control information. The UE may further transmit the uplink control information to a second node of the wireless network.