Abstract:
A wireless test system includes a load board having an upper surface and a lower surface. The load board has a testing antenna disposed on the load board. A socket for receiving a device under test (DUT) having an antenna structure therein is disposed on the upper surface of the load board. The antenna structure is aligned with the testing antenna. The wireless test system further includes a handler for picking up and delivering the DUT to the socket. The handler has a clamp for holding and pressing the DUT. The clamp is grounded during testing and functions as a ground reflector that reflects and reverses radiation pattern of the DUT from an upward direction to a downward direction toward the testing antenna.
Abstract:
A system includes a local oscillator (LO) signal generation circuit, a receiver (RX) circuit, and a calibration circuit. The LO signal generation circuit generates an LO signal according to a reference clock, and includes an active oscillator that generates the reference clock. The active oscillator includes at least one active component. The RX circuit generates a processed RX signal by processing an RX input signal according to the LO signal. The calibration circuit checks a signal characteristic of the processed RX signal by detecting if a calibration tone exists within a receiver bandwidth, set a frequency calibration control output in response to the calibration tone being not found in the receiver bandwidth, and output the frequency calibration control output to the LO signal generation circuit. The LO signal generation circuit adjusts an LO frequency of the LO signal in response to the frequency calibration control output.
Abstract:
A wireless system includes a local oscillator (LO) signal generation circuit, a receiver (RX) circuit, and a calibration circuit. The LO signal generation circuit generates an LO signal according to a reference clock. The LO signal generation circuit includes an active oscillator. The active oscillator generates the reference clock, wherein the active oscillator includes at least one active component, and does not include an electromechanical resonator. The RX circuit generates a down-converted RX signal by performing down-conversion upon an RX input signal according to the LO signal. The calibration circuit generates a frequency calibration control output according to a signal characteristic of the down-converted RX signal, and outputs the frequency calibration control output to the LO signal generation circuit. The LO signal generation circuit adjusts an LO frequency of the LO signal in response to the frequency calibration control output.
Abstract:
A transceiver includes a radio-frequency (RF) front-end circuit, a dedicated RF front-end circuit, and a switchable matching circuit. The RF front-end circuit deals with communications of at least a first wireless communication standard. The dedicated RF front-end circuit deals with communications of a second wireless communication standard only. The switchable matching circuit is coupled to the RF front-end circuit, the dedicated RF front-end circuit, and a signal port of a chip. The switchable matching circuit provides impedance matching between the signal port and the RF front-end circuit when the RF front-end circuit is in operation, and provides impedance matching between the signal port and the dedicated RF front-end circuit when the dedicated RF front-end circuit is in operation. The RF front-end circuit, the dedicated RF front-end circuit, and the switchable matching circuit are integrated in the chip.
Abstract:
A wireless system includes a local oscillator (LO) signal generation circuit, a receiver (RX) circuit, and a calibration circuit. The LO signal generation circuit generates an LO signal according to a reference clock. The LO signal generation circuit includes an active oscillator. The active oscillator generates the reference clock, wherein the active oscillator includes at least one active component, and does not include an electromechanical resonator. The RX circuit generates a down-converted RX signal by performing down-conversion upon an RX input signal according to the LO signal. The calibration circuit generates a frequency calibration control output according to a signal characteristic of the down-converted RX signal, and outputs the frequency calibration control output to the LO signal generation circuit. The LO signal generation circuit adjusts an LO frequency of the LO signal in response to the frequency calibration control output.
Abstract:
A radio-frequency (RF) front-end supporting at least a first and second wireless communication bands includes a mixer arranged for mixing a received signal with a first local oscillation signal when the shared receiver front-end performs the reception operation according to the first wireless communication band, and for mixing the received signal with a second local oscillation signal when the shared receiver front-end performs the reception operation according to the second wireless communication band, wherein the first and second local oscillation signals are different in frequency.
Abstract:
A semiconductor chip includes a first wireless communication circuit, a second wireless communication circuit, and an auxiliary path. The first wireless communication circuit includes a signal path, wherein the signal path includes a signal node. The second wireless communication circuit includes a mixer and a local oscillator (LO) buffer. The LO buffer is arranged to receive and buffer an LO signal, and is further arranged to provide the LO signal to the mixer. The auxiliary path is arranged to electrically connect the LO buffer to the signal node of the signal path, wherein the LO buffer is reused for a loop-back test function of the first wireless communication circuit through the auxiliary path.
Abstract:
A transceiver includes: a radio-frequency (RF) front-end circuit; a dedicated RF front-end circuit; and a switchable matching circuit, integrated in a chip. The RF front-end circuit deals with communications of a first wireless standard, and the dedicated RF front-end circuit deals with communications of a second wireless standard. The switchable matching circuit provides impedance matching between the signal port and the RF front-end circuit when the RF front-end circuit is in operation, and provides impedance matching between the signal port and the dedicated RF front-end circuit when the dedicated RF front-end circuit is in operation, and includes: a first capacitive circuit coupled to the signal port; a first switch circuit coupled between the first capacitive circuit and the dedicated RF front-end circuit; a second capacitive circuit coupled to the dedicated RF front-end circuit; and a second switch circuit coupled to a second terminal of the second capacitive circuit.
Abstract:
A system includes a local oscillator (LO) signal generation circuit, a receiver (RX) circuit, and a calibration circuit. The LO signal generation circuit generates an LO signal according to a reference clock, and includes an active oscillator that generates the reference clock. The active oscillator includes at least one active component. The RX circuit generates a processed RX signal by processing an RX input signal according to the LO signal. The calibration circuit checks a signal characteristic of the processed RX signal by detecting if a calibration tone exists within a receiver bandwidth, set a frequency calibration control output in response to the calibration tone being not found in the receiver bandwidth, and output the frequency calibration control output to the LO signal generation circuit. The LO signal generation circuit adjusts an LO frequency of the LO signal in response to the frequency calibration control output.
Abstract:
A semiconductor chip includes a first wireless communication circuit, a local oscillator (LO) buffer, and an auxiliary path. The first wireless communication circuit has a signal path, wherein the signal path has a mixer input port and a signal node distinct from the mixer input port. The auxiliary path is used to electrically connect the LO buffer to the signal node of the signal path. The LO buffer is reused for a transmit (TX) function through the auxiliary path.