摘要:
A semiconductor structure comprising a first transistor element and a second transistor element is provided. Stress in channel regions of the first and the second transistor element is controlled by forming stressed layers having a predetermined stress over the transistors. The stressed layers may be used as etch stop layers in the formation of contact vias through an interlayer dielectric formed over the transistors.
摘要:
The surface area of silicon lines which receives a silicide portion is increased to decrease the line resistance in narrow polysilicon lines, such as gate electrodes. Sidewall spacers are formed such that an upper portion of the line sidewall is exposed so as to react with a refractory metal to form a low resistance silicide. The upper portion may be exposed by overetching the dielectric layer deposited to form the sidewall spacers.
摘要:
A semiconductor structure comprising a first transistor element and a second transistor element is provided. Stress in channel regions of the first and the second transistor element is controlled by forming stressed layers having a predetermined stress over the transistors. The stressed layers may be used as etch stop layers in the formation of contact vias through an interlayer dielectric formed over the transistors.
摘要:
Polysilicon lines are formed, featuring an upper portion extending beyond the lower portion that defines the required CD. Accordingly, metal silicide layers of increased dimensions can be formed on the upper portion of the polysilicon lines so that the resulting gate structures exhibit a very low final sheet resistance. Moreover, in situ sidewall spacers are realized during the process for forming the polysilicon lines and without additional steps and/or costs.
摘要:
A method for improving the etch behavior of disposable features in the fabrication of a semiconductor device is disclosed. The semiconductor device comprises a bottom anti-reflective coating layer and/or a disposable sidewall spacer which are to be removed in a subsequent etch removal process. The bottom anti-reflective coating layer and/or the disposable sidewall spacer are irradiated by heavy inert ions to alter the structure of the irradiated features and to increase concurrently the etch rate of the employed materials, for example, silicon nitride or silicon reacted nitride.
摘要:
An epitaxially grown channel layer is provided on a well structure after ion implantation steps and heat treatment steps are performed to establish a required dopant profile in the well structure. The channel layer may be undoped or slightly doped, as required, so that the finally obtained dopant concentration in the channel layer is significantly reduced compared to a conventional device to thereby provide a retrograde dopant profile in a channel region of a field effect transistor. Additionally, a barrier diffusion layer may be provided between the well structure and the channel layer to reduce up-diffusion during any heat treatments carried out after the formation of the channel layer. The final dopant profile in the channel region may be adjusted by the thickness of the channel layer, the thickness and the composition of the diffusion barrier layer and any additional implantation steps to introduce dopant atoms in the channel layer.
摘要:
This invention provides methods of forming a field-effect transistor in an integrated circuit using self-aligning technology on the basis of a sidewall spacer masking procedure, both for defining the device isolation features and the source and drain regions. The active region is defined after patterning the gate electrode by means of deposition and etch processes instead of overlay alignment technique. Thus, the present invention enables an increase of the integration density of semiconductor devices, a minimization of the parasitic capacitances in field-effect transistor devices, and a quicker manufacturing process.
摘要:
By performing sophisticated anneal techniques, such as laser anneal, flash anneal and the like, for a metal silicide formation, such as nickel silicide, the risk of nickel silicide defects in sensitive device regions, such as SRAM pass gates, may be significantly reduced. Also, the activation of dopants may be performed in a highly localized manner, so that undue damage of gate insulation layers may be avoided when activating and re-crystallizing drain and source regions.
摘要:
The present invention is directed to a semiconductor device (100) having enhanced electrical performance characteristics, and a method of making such a device. In one illustrative embodiment, the semiconductor device (100) is comprised of a polysilicon gate electrode (104) positioned above a gate insulation layer (105), a plurality of source/drain regions (109) formed in a semiconducting substrate (101), a first metal silicide region (111A) positioned above the gate electrode (104), a second metal silicide region (107) positioned above each of the source/drain regions (109), wherein the first metal silicide region (111A) is approximately 2-10 times thicker than each of the second metal silicide regions (107). In one illustrative embodiment, the inventive method disclosed herein comprises forming a first layer of a refractory metal (110) above a layer of polysilicon (104), and converting the refractory metal layer (110) to a metal suicide layer (111), and patterning the metal silicide layer (111) and the gate electrode layer (104) to form a metal silicide region (111A) above the gate electrode (104). The method further comprises forming a plurality of source/drain regions (109) in the substrate (101), forming a second layer comprised of a refractory metal above at least the gate stack (122) and the source/drain regions (109). The method concludes with converting at least a portion of the second layer of refractory metal to a second metal silicide region above each of the source/drain regions (109).
摘要:
In one embodiment, a protective layer is formed on the top surface of the gate electrode of a transistor device prior to the formation of low resistance metal silicide regions on the drain and source regions. The protective layer prevents the simultaneous formation of a metal silicide region on the gate electrode. Thereafter, a process layer is formed above the source/drain regions and the cover layer that is positioned above the gate electrode. Next, a surface of the process layer is planarized to expose the cover layer, and the cover layer is removed. Then, a metal silicide region is formed above the gate electrode by depositing a layer of refractory metal and performing at least one anneal process.