摘要:
Described are embodiments of stacked field effect transistor (FET) switch having a plurality of FET devices coupled in series to form an FET device stack. To prevent the FET device stack from being turned on during large signal conditions, a first decoupling path and a second decoupling path are provided for the first FET device and the last FET device in the FET device stack. Both decoupling paths are configured to pass a time-variant input signal during the open state. The first decoupling path may be coupled from the drain contact of the first FET device to the gate contact or the source contact. The second decoupling path may be coupled from the source contact of the last FET device to the gate contact or drain contact. The time-variant input signal bypasses the FET device stack through the first and second decoupling paths during the open state.
摘要:
Described are embodiments of stacked field effect transistor (FET) switch having a plurality of FET devices coupled in series to form an FET device stack. To prevent the FET device stack from being turned on during large signal conditions, a first decoupling path and a second decoupling path are provided for the first FET device and the last FET device in the FET device stack. Both decoupling paths are configured to pass a time-variant input signal during the open state. The first decoupling path may be coupled from the drain contact of the first FET device to the gate contact or the source contact. The second decoupling path may be coupled from the source contact of the last FET device to the gate contact or drain contact. The time-variant input signal bypasses the FET device stack through the first and second decoupling paths during the open state.
摘要:
Described are embodiments of stacked field effect transistor (FET) switch having a plurality of FET devices coupled in series to form an FET device stack. To prevent the FET device stack from being turned on during large signal conditions, one or more decoupling paths are provided and are configured to pass the time-variant input signal during the open state of the FET device stack. The first decoupling path may include a capacitor, a transistor, or the like, that passes the time-variant input signal by, for example, presenting a low impedance to the time-variant input signal during the open state. The decoupling paths may be connected so that the time-variant input signal bypasses a portion of the FET device stack during the open state.
摘要:
A digital step attenuator with thermometer encoded attenuator stages is disclosed. In one embodiment, Embodiments disclosed in the detailed description may include a digital step attenuator, programmable thermometer encoded attenuator stages, the digital step attenuator may include a cascade of programmable thermometer encoded attenuator stages. Each stage may be provided by a programmable impedance array including a plurality of impedances arranged in parallel. The impedance of each of the plurality of each stage may change monotonically by switchably inserting or removing one of the plurality of impedances in the arrays. The control circuit may govern the attenuation level of each of the thermometer encoded accumulator stages as a function of a thermometric codeword, which controls the switches in the arrays.
摘要:
Described are embodiments of stacked field effect transistor (FET) switch having a plurality of FET devices coupled in series to form an FET device stack. A control circuit provides biasing voltages to the gate, source, and drain contacts of each of the plurality of FET devices to switch the FET device stack to and from a closed state and an open state. In the open state, the gate contacts of each of the plurality of FET devices are biased by the control circuit at the second voltage. To prevent activation in the open state, the control circuit biases the drain contacts and source contacts of each of the plurality of FET devices at the first voltage. The first voltage is positive relative to a reference voltage, such as ground, while the second voltage is non-negative relative to the reference voltage but less than the first voltage.
摘要:
A band switch with a switchable notch for receive carrier aggregation is disclosed. The band switch has at least one input and an output with at least one series switch coupled between the at least one input and the output. The at least one series switch is adapted to selectively couple the input to the output in response to a first control signal. The band switch also includes at least one shunt switch coupled between the at least one input and a voltage node. The at least one shunt switch is adapted to selectively couple the at least one input to the voltage node in response to a second control signal. In addition, at least one notch filter is selectively coupled to the output in a shunt configuration, wherein the at least one notch filter is configured to attenuate signals within a stop band to attenuate harmonics and distortion.
摘要:
An antenna tuner unit (ATU) that provides broadband tuning is disclosed. The disclosed ATU includes a radio frequency (RF) switch circuit having an N number of switch inputs, wherein N is a natural number equal to 2 or greater. An N number of reactance elements are coupled in series between an RF input and one of the N number of switch inputs. Taps between adjacent pairs of the N number of reactance elements, wherein each of the taps is coupled to a corresponding one of the N number of switch inputs. The ATU further includes a capacitive element for each of the taps, wherein each capacitive element is coupled between a corresponding one of the taps and a voltage node. In at least one embodiment, each of the capacitive elements is made up of a programmable capacitor array.
摘要:
A transconductor stage is a linearized class AB amplifier having embedded noise filtering that enables a biasing of an in-phase/quadrature (I/Q) modulator core with a low quiescent current. Linearization of the transconductor stage is increased by introducing a small amount of negative feedback into the transconductor stage via a feedback circuitry and an error amplifier. A dominant open loop pole in a path between the error amplifier and an output stage of the transconductor stage forms a dominant pole low-pass filter. A low-pass filter transfer function created when a loop including the feedback circuitry is closed attenuates noise introduced by baseband circuitry that supplies baseband signals to the transconductor stage. A master output stage biases a plurality of slave output stages that are in parallel with the master output stage. Each slave output stage is coupled to an individual modulator core such as a Gilbert cell mixer core.
摘要:
The frequency doubler of the present invention operates to provide an in-phase signal and a quadrature signal, each having a frequency equal to twice the frequency of a reference signal. The in-phase and quadrature signals are based on signals that are 0 degrees, 45 degrees, 90 degrees, and 135 degrees out of phase with the reference signal. The in-phase signal is provided by multiplying the signals that are 0 degrees and 90 degrees out of phase with the reference signal, and the quadrature signal is provided by multiplying the signals that are 45 degrees and 135 degrees out of phase with the reference signal.
摘要:
The present invention provides a receiver frontend that eliminates static and dynamic DC errors and has improved second order intermodulation distortion (IMD2) performance. The receiver frontend includes a first mixer that multiplies a received signal and a first local oscillator (LO) signal to produce an intermediate frequency (IF) signal. A second mixer multiplies the IF signal and a second LO signal to produce an output signal. A first divider circuit divides a reference signal from a reference oscillator by a first divisor N to produce the first LO signal, and a second divider circuit divides the reference signal by a second divisor M to produce the second LO signal. Preferably, the first and second divisors N and M are each integers greater than one (1), and the second divisor M is not an integer multiple of the first divisor N.