摘要:
The present invention provides a receiver frontend that eliminates static and dynamic DC errors and has improved second order intermodulation distortion (IMD2) performance. The receiver frontend includes a first mixer that multiplies a received signal and a first local oscillator (LO) signal to produce an intermediate frequency (IF) signal. A second mixer multiplies the IF signal and a second LO signal to produce an output signal. A first divider circuit divides a reference signal from a reference oscillator by a first divisor N to produce the first LO signal, and a second divider circuit divides the reference signal by a second divisor M to produce the second LO signal. Preferably, the first and second divisors N and M are each integers greater than one (1), and the second divisor M is not an integer multiple of the first divisor N.
摘要:
The present disclosure relates to RF circuitry having delay locked loop (DLL) circuitry that may be used to measure amplitude modulation-to-phase modulation (AMPM) distortion of an RF power amplifier during factory calibration or during real time operation of the RF circuitry. During a calibration mode, the DLL circuitry may be calibrated using a reference clock signal. During a phase measurement mode, the DLL circuitry may use the reference clock signal, which is representative of an RF input signal to the RF power amplifier, and a feedback signal, which is representative of an RF output signal from the RF power amplifier, to measure a phase difference between the RF input signal and the RF output signal. By measuring the phase difference at different amplitudes of the RF output signal, the AMPM distortion of the RF power amplifier may be determined and used to correct for the AMPM distortion.
摘要:
The present disclosure relates to multi-mode RF circuitry using a single IQ modulator topology that may support different communication standards, including enhanced data rates for global system for mobile communications evolution (EDGE) and EDGE evolution by dividing certain modulation functions between a frequency synthesizer and an IQ modulator. Specifically, during a standard modulation mode, which may be used to support many communications standards, the frequency synthesizer provides an un-modulated RF carrier signal to the IQ modulator, which either phase modulates or phase and amplitude modulates the un-modulated RF carrier signal to provide a standard modulated RF signal. During a small signal polar modulation mode, which may be used to support the EDGE and EDGE evolution protocols, the frequency synthesizer provides a phase-modulated RF carrier signal to the IQ modulator, which may or may not amplitude modulate the phase-modulated RF carrier signal to provide a small signal polar modulated RF signal.
摘要:
A system and method for calibrating Amplitude Modulation to Phase Modulation (AM/PM) compensation circuitry in a mobile terminal operating according to a polar modulation scheme are provided. In general, during ramp-up for a transmit burst, measurements of a phase error between an input and output of power amplifier circuitry in the transmit chain are obtained. Using the phase error measurements, the AM/PM compensation circuitry is calibrated and used to provide AM/PM compensation for the same transmit burst. By calibrating the AM/PM compensation circuitry using the phase error measurements obtained during ramp-up, the AM/PM compensation circuitry is calibrated for the desired frequency band, sub-band, and power control level setting as well as for the current load conditions at the antenna and ambient temperature.
摘要:
A method for power amplifier (PA) calibration for an envelope tracking system of a wireless device is disclosed. The method involves measuring an output power of a PA that is a part under test (PUT) at a predetermined input power. Another step includes calculating a gain equal to the output power of the PA divided by the predetermined input power. A next step involves calculating a gain correction by subtracting the calculated gain from a desired gain. Other steps include determining an expected supply voltage for the PA at the desired gain using the gain correction applied to a nominal curve of gain versus PA supply voltage, and then storing the expected supply voltage for the PA versus input power in memory.
摘要:
A front end radio architecture (FERA) with power management is disclosed. The FERA includes a first power amplifier (PA) block having a first-first PA and a first-second PA, and a second PA block having a second-first PA and a second-second PA. First and second modulated switchers are adapted to selectively supply power to the first-first PA and the second-first PA, and to supply power to the first-second PA and the second-second PA, respectively. The first and second modulated switchers have a modulation bandwidth of at least 20 MHz and are both suitable for envelope tracking modulation. A control system is adapted to selectively enable and disable the first-first PA, first-second PA, the second-first PA, and the second-second PA. First and second switches are responsive to control signals to route carriers and received signals between first and second antennas depending upon a selectable mode of operation such as intra-band or inter-band operation.
摘要:
A transmitter includes a polar modulator that creates phase and amplitude signals which in turn drive a power amplifier. To compensate for AM to PM conversion of the amplitude signal into the amplified signal, a compensation signal is generated from the amplitude signal and combined with the phase signal such that when amplified, the compensation signal cancels the AM to PM conversion. The compensation signal may have an offset term, a linear term, a quadratic term, and a cubic term. A second embodiment comprises a technique by which AM to AM conversion may concurrently be addressed using a second compensation signal.
摘要:
A system and method for detecting and correcting over-current and/or over-voltage conditions in power amplifier circuitry in a transmit chain of a mobile terminal are provided. In general, over-current detection and correction circuitry combines a current detection signal indicative of a current provided to or drained by the power amplifier circuitry during ramp-up for a transmit burst and a substantially inverse current ramping profile to provide a first constant value. The first constant value is compared to a current threshold or limit value to determine whether an over-current condition exists. If an over-current condition exists, the over-current detection and correction circuitry operates to reduce the output power of the power amplifier circuitry during ramp-up for the transmit burst to correct for the over-current condition. In a similar manner, over-voltage detection circuitry operates to detect and correct over-voltage conditions during ramp-up for the transmit burst.
摘要:
A system and method are provided for switching from one phase-locked loop feedback source to another in a radio frequency (RF) transmitter. The RF transmitter includes a phase-locked loop (PLL) that provides a phase-modulated RF input signal and power amplifier circuitry that amplifies the RF input signal to provide an RF output signal. The PLL includes switching circuitry that couples a feedback path of the PLL to an output of the PLL for open loop operation and couples the feedback path of the PLL to an output of the power amplifier circuitry for closed loop operation. Prior to switching the feedback path from the output of the PLL to the output of the power amplifier circuitry, time alignment circuitry operates to time-align feedback signals from the outputs of the PLL and the power amplifier circuitry such that switching from open loop operation to closed loop operation causes minimal phase disturbance.
摘要:
A system and method for performing DC offset correction in a wireless communication receiver during “dead time” are provided. The receiver includes amplifier circuitry that amplifies a received radio frequency (RF) signal, downconversion circuitry that downconverts the received RF signal to provide a downconverted signal, digitization circuitry that digitizes the downconverted signal to provide a digital signal, and digital DC offset correction circuitry enabled during the dead time when there should be no DC content in the downconverted signal. In operation, the digital DC offset correction circuitry detects a DC offset of the digital signal and subtracts the DC offset from the digital signal.