摘要:
Processes for preparation of a protein-polymer composite material are provided according to embodiments of the present invention which include providing an admixture of a polymer resin, a surfactant and a non-aqueous organic solvent. An aqueous solution containing bioactive proteins and substantially free of surfactant is mixed with the admixture. The emulsion is mixed with a crosslinker to produce a curable composition. The curable composition is cured, thereby producing the protein-polymer composite material.
摘要:
Disclosed is a multilayer structure wherein a first layer of a first material having an outer surface and a refracted index between 2 and 4 extends across an outer surface of a second layer having a refractive index between 1 and 3. The multilayer stack has a reflective band of less than 200 nanometers when viewed from angles between 0° and 80° and can be used to reflect a narrow range of electromagnetic radiation in the ultraviolet, visible and infrared spectrum ranges. In some instances, the reflection band of the multilayer structure is less than 100 nanometers. In addition, the multilayer structure can have a quantity defined as a range to mid-range ratio percentage of less than 2%.
摘要:
There are provided a photosetting type bio-based coating composition and its coated article, wherein the coating composition has a sufficient hydrolysis resistance and a sufficient crosslinking density so as to be excellent in such as long-term stability, and is inexpensive, and is applicable also to an aqueous solvent. The photosetting type bio-based coating composition according to the present invention is characterized by comprising: a bio-based photopolymerizable compound as a film-forming ingredient which compound has at least one lactic acid unit and at least one photopolymerizable group together in a molecule; and a photopolymerization initiator. The coated article according to the present invention is characterized by being obtained by being coated with the aforementioned coating composition.
摘要:
Processes for preparation of a protein-polymer composite material are provided according to embodiments of the present invention which include providing an admixture of a polymer resin, a surfactant and a non-aqueous organic solvent. An aqueous solution containing bioactive proteins and substantially free of surfactant is mixed with the admixture. The emulsion is mixed with a crosslinker to produce a curable composition. The curable composition is cured, thereby producing the protein-polymer composite material.
摘要:
A method for producing a multi-layer photonic structure having at least one group of alternating layers of high index material and low index material may include, determining a characteristic property function for the multi-layer photonic structure, determining a thickness multiplier for the at least one group of alternating layers based on a comparison of the characteristic property function to a target profile, adjusting the characteristic property function with the determined thickness multiplier, and comparing an adjusted characteristic property function to the target profile, wherein, when the adjusted characteristic property function does not approximate the target profile, at least one additional group of layers is added to the multi-layer photonic structure.
摘要:
Disclosed is a multilayer structure wherein a first layer of a first material having an outer surface and a refracted index between 2 and 4 extends across an outer surface of a second layer having a refractive index between 1 and 3. The multilayer stack has a reflective band of less than 200 nanometers when viewed from angles between 0° and 80° and can be used to reflect a narrow range of electromagnetic radiation in the ultraviolet, visible and infrared spectrum ranges. In some instances, the reflection band of the multilayer structure is less than 100 nanometers. In addition, the multilayer structure can have a quantity defined as a range to mid-range ratio percentage of less than 2%.
摘要:
A multi-layer photonic structure may include alternating layers of high index material and low index material having a form [H(LH)N] where, H is a layer of high index material, L is a layer of low index material and N is a number of pairs of layers of high index material and layers of low index material. N may be an integer ≧1. The low index dielectric material may have an index of refraction nL from about 1.3 to about 2.5. The high index dielectric material may have an index of refraction nH from about 1.8 to about 3.5, wherein nH>nL and the multi-layer photonic structure comprises a reflectivity band of greater than about 200 nm for light having angles of incidence from about 0 degrees to about 80 degrees relative to the multi-layer photonic structure. The multi-layer photonic structure may be incorporated into a paint or coating system thereby forming an omni-directional reflective paint or coating.
摘要:
A picture display device includes display elements reflecting specific wavelengths of visible light; and shape deformation portions for inducing elastic deformation of the display elements. The individual display elements have colloidal particles arrayed at regular spacing, and an elastically deformable filler material intervening between the colloidal particles. The shape deformation portion includes a shape retention component formed of a material capable of reversible plastic deformation by external force.
摘要:
Quinoline derivatives represented by formula (1) wherein two or more of substituents R1 to R7 are each a group of formula (2). In general formula (2), Q is a carbo- or hetero-aryl group; and the number (n) of double bonds is preferably 1 to 3. Use of such derivatives in an organic EL device provided with a layer of an organic compound and two electrodes sandwiching the layer as the organic compound gives devices emitting yellow to red light with high brightness and high efficiency. Further, doping a hole transport layer with such derivatives realizes organic EL devices capable of emitting lights of resultant colors (e.g., white) composed of lights from light-emitting and hole transport layers.
摘要:
A substrate or coating is provided that includes a protease with enzymatic activity toward a component of a biological stain. Also provided is a process for facilitating the removal of a biological stain is provided wherein an inventive substrate or coating including a protease is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from the substrate or said coating.