Abstract:
The two housing parts are used as springing means which are mounted behind each other, thereby extending the full spring path. Despite the soft springs obtained by the housing, the individual housing parts can be manufactured from a stable material so that they remain dimensionally stable over a long-term period even when subjected to heavy stress by virtue of the fact that they are arranged between a vehicle seat and the chassis of the vehicle, thereby meeting the high quality standards required by the vehicle industry. Complex successive positioning of the springs inside the housing is avoided. As a result, it is possible to produce a force measuring device which is particularly compact, stable and economical. A coil with a core is used as an inductive deflection sensor.
Abstract:
A handsfree communication system includes microphones, a beamformer, and filters. The microphones are spaced apart and are capable of receiving acoustic signals. The beamformer compensates for propagation delays between the direct and reflected acoustic signals. The filters are configured to a predetermined susceptibility level. The filter process the output of the beamformer to enhance the quality of the received signals.
Abstract:
An earplug that includes a piezoelectric element that converts electrical signals into oscillations; and a deformable material of which at least one segment is insertable into an external auditory canal of a person to ensure an acoustic seal by deformation, the piezoelectric element being disposed inside the deformable material and in fixed contact therewith, the deformable material being able to transmit the oscillations at a periphery and ensure conduction of the oscillations through cartilage and soft tissue of the auditory canal.
Abstract:
A system for enhancing the sound signal produced by an audio system in a listening environment by compensating for ambient noise in the listening environment is provided. The system receives an electrical sound signal and generates a sound output therefrom. A total sound signal is sensed representative of the total sound level in the environment, where the total sound level includes both the sound output from the audio system and the ambient noise within the environment. The system extracts an ambient noise signal representative of the ambient noise in the environment from the total sound signal in response to the total sound signal and to a reference signal derived from the electrical sound signal. The system extracts the ambient noise signal using an adaptive filter with an adaptive step size. The system generates a control signal in response to the ambient noise signal and adjusts the sound output of the audio system to compensate for the ambient noise level in response to the control signal. The system calculates a step size for controlling the adaptive step size of the adaptive filter.
Abstract:
A device and a method is presented in which an adjustment to the noise conditions is made for the purpose of controlling the volume and other variables of a desired signal offered in a monitored space, in the course of which, for the purpose of adjustment, a monitoring signal occurring at the monitoring point is picked up and split into a desired-signal component and a noise-signal component. These two components then become the basis for the adjustment.
Abstract:
A detonator device for tripping a passenger restraint device in a motor vehicle includes a detonator circuit on a holder. Firing pins for receiving a detonator element are an integral component of the holder.
Abstract:
The audio amplifier includes a variable gain amplifier receiving the input audio signal and providing the output signal, whereby the output signal corresponds to the input signal amplified by a limiter gain. The audio amplifier further includes a limiter gain calculation unit, thus the input signal is amplified by the limiter gain. A control unit receives a signal representative of the input signal and is configured to estimate, based on a mathematical model, the input current or the total output current of the audio amplifier thus providing an estimated current signal corresponding to (and resulting from) the output signal, whereby the limiter gain calculation unit is configured to calculate, dependent on the estimation, the limiter gain such that the actual input current or the total output current of the audio amplifier does not exceed a threshold current value.
Abstract:
An apparatus for sub-band processing of an input signal includes an analysis filter bank, signal processors and a synthesis filter bank. The analysis filter bank includes first and second signal branches for decomposing the input signal into two sub-band signals. The first signal branch includes a decimation filter connected upstream of a down-sampling unit and a basis filter. The second branch includes an all-pass filter and a subtractor that is connected downstream of the all-pass filter and the basis filter in the first signal branch via an up-sampling unit and a subsequent interpolation filter. At least one of the decimation filter and the interpolation filter is an infinite impulse response filter, and the all-pass filter has a phase response that compensates for a phase response of at least one of the decimation filter and the interpolation filter.
Abstract:
An input signal is supplied to a loudspeaker-room-microphone system having a transfer function and that provides an output signal. An adaptive filter unit models the transfer function of the loudspeaker-room-microphone system and provides an approximated output signal, where the output signal and the approximated output signal are subtracted from each other to provide an error signal. The modeling of the transfer function of the loudspeaker-room-microphone system in the adaptive filter comprises transforming the input signal and the error signal from the time domain into the spectral domain; delaying of the input signal in the frequency domain to generate multiple differently delayed input signals in the frequency domain; adaptive filtering of each one of the multiple differently delayed input signals in the frequency domain according to the error signal in the spectral domain; summing up of the filtered differently delayed input signals in the frequency domain to generate the approximated output signal in the frequency domain; and transforming the approximated output signal from the spectral domain into the time domain.
Abstract:
An active noise cancellation system includes an adaptive filter, a signal source, an acoustic actuator, a microphone, a secondary path and an estimation unit. The adaptive filter receives a reference signal representing noise, and provides a compensation signal in response to the received reference signal. The signal source provides a measurement signal. The acoustic actuator radiates the compensation signal and the measurement signal to the listening position. The microphone receives a first signal that is a superposition of the radiated compensation signal, the radiated measurement signal, and the noise signal at the listening position, and provides a microphone signal in response to the received first signal. The secondary path includes a secondary path system that represents a signal transmission path between an output of the adaptive filter and an output of the microphone. The estimation unit estimates a transfer characteristic of the secondary path system in response to the measurement signal and the microphone signal.