摘要:
A nonvolatile semiconductor memory device includes: a stacked body with a plurality of insulating films and electrode films alternately stacked therein, through which a through hole extending in the stacking direction is formed; a semiconductor pillar buried inside the through hole; and a charge storage layer located on both sides of each of the electrode films in the stacking direction and insulated from the electrode film and the semiconductor pillar.
摘要:
A nonvolatile semiconductor memory device includes a first stacked body on a silicon substrate, and a second stacked body is provided thereon. The first stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films, and a first portion of a through-hole extending in a stacking direction is formed. The second stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films, and a second portion of the through-hole is formed. A memory film is formed on an inner face of the through-hole, and a silicon pillar is buried in an interior of the through-hole. A central axis of the second portion of the through-hole is shifted from a central axis of the first portion, and a lower end of the second portion is positioned lower than an upper portion of the first portion.
摘要:
A nonvolatile semiconductor memory device includes a plurality of the memory strings, in which a plurality of electrically programmable memory cells is connected in series. The memory strings comprise a pillar shaped semiconductor; a first insulation film formed around the pillar shaped semiconductor; a charge storage layer formed around the first insulation film; a second insulation film formed around the charge storage layer; and first or nth electrodes formed around the second insulation film (n is natural number more than 1). The first or nth electrodes of the memory string and the first to nth electrodes of at least two other memory strings which are adjacent to the memory string in two directions are shared as first to nth conductor layers spread in two dimensions.
摘要:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including electrode films alternately stacked with inter-electrode insulating films; first and second semiconductor pillars piercing the stacked structural unit; a connection portion semiconductor layer electrically connect the first and second semiconductor pillars; a connection portion conductive layer provided to oppose the connection portion semiconductor layer; a memory layer and an inner insulating film provided between the first and semiconductor pillars and each of the electrode films, and between the connection portion conductive layer and the connection portion semiconductor layer; an outer insulating film provided between the memory layer and each of the electrode films; and a connection portion outer insulating film provided between the memory layer and the connection portion conductive layer. The connection portion outer insulating film has a film thickness thicker than a film thickness of the outer insulating film.
摘要:
A semiconductor device has a substrate, a source region formed on the surface portion of the substrate, a first insulating layer formed on the substrate, a gate electrode formed on the first insulating layer, a second insulating layer formed on the gate electrode, a body section connected with the source region, penetrating through the first insulating layer, the gate electrode and the second insulating layer, and containing a void, a gate insulating film surrounding the body section, and formed between the body section and the gate electrode, and a drain region connected with the body section.
摘要:
A multilayer body is formed by alternately stacking electrode films serving as control gates and dielectric films in a direction orthogonal to an upper surface of a silicon substrate. Trenches extending in the word line direction are formed in the multilayer body and a memory film is formed on an inner surface of the trench. Subsequently, a silicon body is buried inside the trench, and a charge storage film and the silicon body are divided in the word line direction to form silicon pillars. This simplifies the configuration of memory cells in the bit line direction, and hence can shorten the arrangement pitch of the silicon pillars, decreasing the area per memory cell.
摘要:
A semiconductor device has a substrate, a source region formed on the surface portion of the substrate, a first insulating layer formed on the substrate, a gate electrode formed on the first insulating layer, a second insulating layer formed on the gate electrode, a body section connected with the source region, penetrating through the first insulating layer, the gate electrode and the second insulating layer, and containing a void, a gate insulating film surrounding the body section, and formed between the body section and the gate electrode, and a drain region connected with the body section.
摘要:
A non-volatile semiconductor storage device includes a first layer and a second layer. The first layer includes: a plurality of first conductive layers extending in parallel to a substrate and laminated in a direction perpendicular to the substrate; a first insulation layer formed on an upper layer of the plurality of first conductive layers; a first semiconductor layer formed to penetrate the plurality of first conductive layers; and a charge accumulation layer formed between the first conductive layers and the first semiconductor layer. Respective ends of the first conductive layers are formed in a stepwise manner in relation to each other in a first direction. The second layer includes: a plurality of second conductive layers extending in parallel to the substrate and laminated in a direction perpendicular to the substrate, the second conductive layers being formed in the same layer as the plurality of first conductive layers; and a second insulation layer formed on an upper layer of the plurality of second conductive layers. Respective ends of the second conductive layers are formed to align along a straight line extending in a direction substantially perpendicular to the substrate at a predetermined area.
摘要:
Each of the memory strings includes: a first columnar semiconductor layer extending in a vertical direction to a substrate; a plurality of first conductive layers formed to sandwich an insulation layer with a charge trap layer and expand in a two-dimensional manner; a second columnar semiconductor layer formed in contact with the top surface of the first columnar semiconductor layer and extending in a vertical direction to the substrate; and a plurality of second conductive layers formed to sandwich an insulation layer with the second columnar semiconductor layer and formed in a stripe pattern extending in a first direction orthogonal to the vertical direction. Respective ends of the plurality of first conductive layers in the first direction are formed in a stepwise manner in relation to each other, entirety of the plurality of the second conductive layers are formed in an area immediately above the top layer of the first conductive layers, and the plurality of first conductive layers and the plurality of second conductive layers are covered with a protection insulation layer that is formed continuously with the plurality of first conductive layers and the second conductive layers.
摘要:
A method for manufacturing a nonvolatile semiconductor storage device, including: forming a first conductive layer so that it is sandwiched in an up-down direction by first insulating layers; forming a first hole so that it penetrates the first insulating layers and the first conductive layer; forming a first side wall insulating layer on a side wall facing the first hole; forming a sacrificing layer so that the sacrificing layer infills the first hole; forming a second conductive layer on an upper layer of the sacrificing layer so that the second conductive layer is sandwiched by the second insulating layer in an up-down direction; forming a second hole on a position which matches with the first hole so that the second hole penetrates the second insulating layer and the second conductive layer; forming a second side wall insulating layer on a side wall facing the second hole; removing the sacrificing layer after the formation of the second side wall insulating layer; and forming a semiconductor layer so that the semiconductor layer infills the first hole and the second hole after the removal of the sacrificing layer