摘要:
Disclosed is a magnesium alloy material having excellent tensile strength and favorable ductility. Therefore, the magnesium alloy sheet material formed by rolling a magnesium alloy having a long period stacking order phase crystallized at the time of casting includes in a case where a sheet-thickness traverse section of an alloy structure is observed at a substantially right angle to the longitudinal direction by a scanning electron microscope, a structure mainly composed of the long period stacking order phase, in which at least two or more αMg phases having thickness in the observed section of 0.5 μm or less are laminated in a layered manner with the sheet-shape long period stacking order phase.
摘要:
To provide a method of welding a metallic glass and a crystalline metal by shifting a high-energy beam scan area from a butting face thereof to the metallic glass side, to fall within a composition range required for glass phase formation of a metallic glass base material in a simplified assured manner. In a welding method for weldingly joining a metallic glass and a crystalline metal together by scanning a high-energy beam in a position shifted from a butt interface between the metallic glass and the crystalline metal toward the metallic glass, it is intended to provide a technique for allowing a composition of a melt zone formed around a welding interface to fall within a composition range required for forming a glass phase in the metallic glass to be joined, in a simple and more reliable manner. A metallic glass (1) and a crystalline metal (2) are butted against each other to define a groove space (Y) over a groove formed on the side of the crystalline metal (2). Then, electron beam welding is performed in a position shifted from the butt interface toward the metallic glass (1) to form a melt zone (4) which has a composition for forming an amorphous metallic glass, and comprises a top fused sub-region (41) and a lower fused sub-region (42), wherein the top fused sub-region has a relatively wide area including the groove space (Y) defined adjacent to an upper end of the butt interface and on the side of the crystalline metal, and the lower fused sub-region extends from the top fused sub-region to reach bottom surfaces of the metallic glass and the crystalline metal, while being narrowingly tapered in a downward direction.
摘要:
Provided is a high-strength and high-toughness magnesium alloy which has practical level of both the strength and the toughness for expanded applications of the magnesium alloys, and is a method for manufacturing thereof. The high-strength and high-toughness magnesium alloy of the present invention contains: a atom % in total of at least one metal of Cu, Ni, and Co; and b atom % in total of at least one element selected from the group consisting of Y, Dy, Er, Ho, Gd, Tb, and Tm, while a and b satisfying the following formulae (1) to (3), 0.2≦a≦10 (1) 0.2≦b≦10 (2) 2/3a−2/3
摘要:
[Problems] To provide a method of welding a metallic glass and a crystalline metal by shifting a high-energy beam scan area from a butting face thereof to the metallic glass side, to fall within a composition range required for glass phase formation of a metallic glass base material in a simplified assured manner.[Means for Solving Problems] In a welding method for weldingly joining a metallic glass and a crystalline metal together by scanning a high-energy beam in a position shifted from a butt interface between the metallic glass and the crystalline metal toward the metallic glass, it is intended to provide a technique for allowing a composition of a melt zone formed around a welding interface to fall within a composition range required for forming a glass phase in the metallic glass to be joined, in a simple and more reliable manner. A metallic glass (1) and a crystalline metal (2) are butted against each other to define a groove space (Y) over a groove formed on the side of the crystalline metal (2). Then, electron beam welding is performed in a position shifted from the butt interface toward the metallic glass (1) to form a melt zone (4) which has a composition for forming an amorphous metallic glass, and comprises a top fused sub-region (41) and a lower fused sub-region (42), wherein the top fused sub-region has a relatively wide area including the groove space (Y) defined adjacent to an upper end of the butt interface and on the side of the crystalline metal, and the lower fused sub-region extends from the top fused sub-region to reach bottom surfaces of the metallic glass and the crystalline metal, while being narrowingly tapered in a downward direction.
摘要:
Provided is a high-strength and high-toughness magnesium alloy which has practical level of both the strength and the toughness for expanded applications of the magnesium alloys, and is a method for manufacturing thereof. The high-strength and high-toughness magnesium alloy of the present invention contains: a atom % in total of at least one metal of Cu, Ni, and Co; and b atom % in total of at least one element selected from the group consisting of Y, Dy, Er, Ho, Gd, Tb, and Tm, while a and b satisfying the following formulae (1) to (3), 0.2≦a≦10 (1) 0.2≦b≦10 (2) 2/3a−2/3
摘要:
The present invention provides a magnesium alloy material, having superior mechanical properties without using special production equipment or processes, and a production process thereof. The magnesium alloy material of the present invention composed of an Mg—Zn—RE alloy comprises essential components in the form of 0.5 to 3 atomic percent of Zn and 1 to 5 atomic percent of RE, with the remainder comprising Mg and unavoidable impurities. The Mg—Zn—RE alloy has a lamellar phase formed from a long period stacking ordered structure and α-Mg in the alloy structure thereof. The long period stacking ordered structure has at least one of a curved portion and a bent portion and has a divided portion in at least a portion thereof. Finely granulated α-Mg having a mean particle diameter of 2 μm or less is formed in the divided portion.
摘要:
A welding method is provided which makes it possible to obtain a joint body having a sufficient strength by selecting a metal glass and a crystalline metal having given conditions. According to the present invention, there is provided a welding method of applying energy to an interface where a metal glass and a crystalline metal make contact with each other or to the metal glass near the interface, of forming a molten layer by heating and melting the metal glass and of performing welding, in which the molten layer after the metal glass and the crystalline metal have been joined together has a glass formation ability, the metal glass has a glass formation ability in which a nose time of a TTT curve when a solid of the metal glass is reheated is 0.2 seconds or more, and the metal glass and the crystalline metal are formed with a material that satisfies a temperature range of a temperature of the metal glass at which a spread factor of the crystalline metal that has not been melted and the molten metal glass is 25% or more and a melting point of the crystalline metal to be 100k or more.
摘要:
Disclosed herein is a medical implant including an implant body of which at least a part is comprised of a biodegradable metal, wherein the part comprised of the biodegradable metal has a crystal grain diameter of not more than 10 μm.
摘要:
The present invention provides a magnesium alloy material excellent in high mechanical characteristics without using special manufacturing facilities or processes and a method for manufacturing the magnesium alloy material. The magnesium alloy material is an Mg—Zn—RE alloy containing Zn as an essential component, at least one of Gd, Tb, and Tm as RE, and the rest including Mg and unavoidable impurities and contains a needle-like precipitate or a board-like precipitate (lengthy precipitate: X-phase=β-phase, β′-phase, and β1-phase).
摘要:
A high strength and high toughness magnesium alloy, characterized in that it is a plastically worked product produced by a method comprising preparing a magnesium alloy cast product containing a atomic % of Zn, b atomic % of Y, a and b satisfying the following formulae (1) to (3), and the balance amount of Mg, subjecting the magnesium alloy cast product to a plastic working to form a preliminary plastically worked product, and subjecting the preliminary plastically worked product to a heat treatment, and it has a hcp structure magnesium phase and a long period stacking structure phase at an ordinary temperature; (1) 0.5≦a
摘要翻译:一种高强度,高韧性的镁合金,其特征在于,是一种通过包括制备含有原子%Zn,b原子%的Y,a和b满足下式的镁合金铸造产品的方法制造的塑性加工产品( 1)〜(3)和Mg的平衡量,使镁合金铸造品进行塑性加工,形成预备的塑性加工品,对初步的塑性加工品进行热处理,并具有hcp结构 镁相和常温下的长周期堆叠结构相; (1)0.5 <= a <5.0(2)0.5