摘要:
A method for annealing a semiconductor substrate by light irradiation, includes depositing a translucent film with a predetermined thickness on a semiconductor substrate. The translucent film has a refractive index that is smaller than that of the semiconductor substrate. The thickness is defined by a peak wavelength of the light and the refractive index of the translucent film. The semiconductor substrate is heated in a temperature range of about 300° C. to about 600° C. A surface of the semiconductor substrate is heated with the light which has a pulse width of about 0.1 ms to about 100 ms.
摘要:
A method for manufacturing a semiconductor device, includes forming a first impurity implanted layer in a semiconductor substrate by selectively implanting ions of a first impurity. A dummy pattern is formed on a surface of the semiconductor substrate above the first impurity implanted layer. A second impurity implanted layer is formed in the semiconductor substrate by implanting ions of a second impurity. An interlevel insulating film is buried on the surface of the semiconductor substrate so as to planarize at the level of the dummy pattern. Ions of the first and second impurities are activated by irradiating the semiconductor substrate with a pulsed light at a pulse width of 0.1 ms to 100 ms. An opening is formed by selectively removing the dummy pattern. A gate insulating film and a gate electrode are formed on the exposed surface of the semiconductor substrate.
摘要:
A semiconductor comprises a substrate including a single crystal semiconductor region, and a pattern including a line pattern provided on the substrate, the line pattern having a longitudinal direction differing from a crystal orientation of the single crystal semiconductor region.
摘要:
A manufacturing method of a semiconductor device, the method including implanting impurity ions into a silicon layer and irradiating a pulsed light having a pulse width of 100 milliseconds or less and a rise time of 0.3 milliseconds or more onto the silicon layer thereby activating the impurity ions. The rise time is defined as a time interval of a leading edge between an instant at which the pulsed light starts to rise and an instant at which the pulsed light reaches a peak energy.
摘要:
A method of semiconductor device manufacture provided includes forming a gate insulating layer upon a single crystal semiconductor substrate, forming a gate electrode made from a polycrystal conductive film upon the gate insulating layer, implanting impurity in the gate electrode and in the surface layer of the semiconductor substrate adjacent to or separate from the gate electrode, performing a first heat treatment, and performing a second heat treatment. The first heat treatment performs heat treatment at a temperature that diffuses the impurity implanted mainly in the gate electrode and controls the diffusion of the impurity implanted in the surface layer of the semiconductor substrate. The second heat treatment performs heat treatment at a higher temperature and for a shorter time than the first heat treatment, and at a temperature that activates the impurity implanted in the semiconductor substrate.
摘要:
A shallow p-n junction diffusion layer having a high activation rate of implanted ions, low resistivity, and a controlled leakage current is formed through annealing. Annealing after impurities have been doped is carried out through light irradiation. Those impurities are activated by annealing at least twice through light irradiation after doping impurities to a semiconductor substrate 11. The light radiations are characterized by usage of a W halogen lamp RTA or a flash lamp FLA except for the final light irradiation using a flash lamp FLA. Impurity diffusion maybe controlled to a minimum, and crystal defects, which have developed in an impurity doping process, may be sufficiently reduced when forming ion implanted layers in a source and a drain extension region of the MOSFET or ion implanted layers in a source and a drain region.
摘要:
A semiconductor device includes a semiconductor region, a source region, a drain region, a source extension region a drain extension region, a first gate insulation film, a second gate insulation film, and a gate electrode. The source region, drain region, source extension region and drain extension region are formed in a surface portion of the semiconductor region. The first gate insulation film is formed on the semiconductor region between the source extension region and the drain extension region. The first gate insulation film is formed of a silicon oxide film or a silicon oxynitride film having a nitrogen concentration of 15 atomic % or less. The second gate insulation film is formed on the first gate insulation film and contains nitrogen at a concentration of between 20 atomic % and 57 atomic %. The gate electrode is formed on the second gate insulation film.
摘要:
A manufacturing method of a semiconductor device, the method including implanting impurity ions into a silicon layer and irradiating a pulsed light having a pulse width of 100 milliseconds or less and a rise time of 0.3 milliseconds or more onto the silicon layer thereby activating the impurity ions. The rise time is defined as a time interval of a leading edge between an instant at which the pulsed light starts to rise and an instant at which the pulsed light reaches a peak energy.
摘要:
An annealing apparatus, includes a substrate stage placing a semiconductor substrate; a light source facing the substrate stage, configured to irradiate a pulsed light at a pulse width of approximately 0.1 ms to 100 ms on a surface of the semiconductor substrate; and a mask configured to selectively reduce intensity of the light transmitting a peripheral region along an outer edge of the semiconductor substrate, so as to define an irradiation region by the peripheral region.
摘要:
A doping method includes implanting first impurity ions into a semiconductor substrate, so as to form a damaged region in the vicinity of a surface of the semiconductor substrate, the first impurity ions not contributing to electric conductivity; implanting second impurity ions into the semiconductor substrate through the damaged region, the second impurity ions having an atomic weight larger than the first impurity ions and contributing to the electric conductivity; and heating the surface of the semiconductor substrate with a light having a pulse width of about 0.1 ms to about 100 ms, so as to activate the second impurity ions.