摘要:
A system for generating and displaying holographic visual aids associated with a story to an end user of a head-mounted display device while the end user is reading the story or perceiving the story being read aloud is described. The story may be embodied within a reading object (e.g., a book) in which words of the story may be displayed to the end user. The holographic visual aids may include a predefined character animation that is synchronized to a portion of the story corresponding with the character being animated. A reading pace of a portion of the story may be used to control the playback speed of the predefined character animation in real-time such that the character is perceived to be lip-syncing the story being read aloud. In some cases, an existing book without predetermined AR tags may be augmented with holographic visual aids.
摘要:
Technology is described for providing a virtual spectator experience for a user of a personal A/V apparatus including a near-eye, augmented reality (AR) display. A position volume of an event object participating in an event in a first 3D coordinate system for a first location is received and mapped to a second position volume in a second 3D coordinate system at a second location remote from where the event is occurring. A display field of view of the near-eye AR display at the second location is determined, and real-time 3D virtual data representing the one or more event objects which are positioned within the display field of view are displayed in the near-eye AR display. A user may select a viewing position from which to view the event. Additionally, virtual data of a second user may be displayed at a position relative to a first user.
摘要:
Methods for controlling an augmented reality environment associated with a head-mounted display device (HMD) are described. In some embodiments, a virtual pointer may be displayed to an end user of the HMD and controlled by the end user using motion and/or orientation information associated with a secondary device (e.g., a mobile phone). Using the virtual pointer, the end user may select and manipulate virtual objects within the augmented reality environment, select real-world objects within the augmented reality environment, and/or control a graphical user interface of the HMD. In some cases, the initial position of the virtual pointer within the augmented reality environment may be determined based on a particular direction in which the end user is gazing and/or a particular object at which the end user is currently focusing on or has recently focused on.
摘要:
A method and apparatus for the creation of a perspective-locked virtual object having in world space. The virtual object may be consumed) by another user with a consumption device at a location, position, and orientation which is the same as, or proximate to, the location, position, and orientation where the virtual object is created. Objects may have one, few or many allowable consumption locations, positions, and orientations defined by its creator
摘要:
A see through head mounted display apparatus includes code performing a method of choosing and optimal viewing location and perspective for shared-view virtual objects rendered for multiple users in a common environment. Multiple objects and multiple users are taken into account in determining the optimal, common viewing location. The technology allows each user to have a common view if the relative position of the object in the environment.
摘要:
A system and method are disclosed for displaying virtual objects in a mixed reality environment in a way that is optimal and most comfortable for a user to interact with the virtual objects. When a user is moving through the mixed reality environment, the virtual objects may remain world-locked, so that the user can move around and explore the virtual objects from different perspectives. When the user is motionless in the mixed reality environment, the virtual objects may rotate to face the user so that the user can easily view and interact with the virtual objects.
摘要:
A system and method are disclosed for displaying virtual objects in a mixed reality environment in a way that is optimal and most comfortable for a user to interact with the virtual objects. When a user is not focused on the virtual object, which may be a heads-up display, or HUD, the HUD may remain body locked to the user. As such, the user may explore and interact with a mixed reality environment presented by the head mounted display device without interference from the HUD. When a user wishes to view and/or interact with the HUD, the user may look at the HUD. At this point, the HUD may change from a body locked virtual object to a world locked virtual object. The user is then able to view and interact with the HUD from different positions and perspectives of the HUD.
摘要:
A system and method are disclosed for displaying virtual objects in a mixed reality environment including shared virtual objects and private virtual objects. Multiple users can collaborate together in interacting with the shared virtual objects. A private virtual object may be visible to a single user. In examples, private virtual objects of respective users may facilitate the users' collaborative interaction with one or more shared virtual objects.
摘要:
Technology is described for providing realistic occlusion between a virtual object displayed by a head mounted, augmented reality display system and a real object visible to the user's eyes through the display. A spatial occlusion in a user field of view of the display is typically a three dimensional occlusion determined based on a three dimensional space mapping of real and virtual objects. An occlusion interface between a real object and a virtual object can be modeled at a level of detail determined based on criteria such as distance within the field of view, display size or position with respect to a point of gaze. Technology is also described for providing three dimensional audio occlusion based on an occlusion between a real object and a virtual object in the user environment.
摘要:
Described herein is a telepresence system where a real-time a virtual hologram of a user is displayed at a remote display screen and is rendered from a vantage point that is different than the vantage point from which images of the user are captured via a video camera. The virtual hologram is based at least in part upon data acquired from a sensor unit at the location of the user. The sensor unit includes a color video camera that captures 2-D images of the user including surface features of the user. The sensor unit also includes a depth sensor that captures 3-D geometry data indicative of the relative position of surfaces on the user in 3-D space. The virtual hologram is rendered to orientate the gaze of the eyes of the virtual hologram towards the eyes of a second user viewing the remote display screen.