摘要:
A thermosiphon cooling assembly for dissipating heat generated by an electronic device includes a housing having a housing top, housing bottom and opposing sides. The opposing sides extend between the housing top and the housing bottom to define a low profile entrance and a low profile exit. A refrigerant is disposed within one or more boiling chambers. Heat generated by the electronic device is transferred to the refrigerant by the boiling chambers for liquid-to-vapor transformation. Condenser tubes having a bottom end and a top end extend from the boiling chambers at a diagonally upward angle across the sides between the housing bottom and housing top. The condenser tubes receive and condense vapor boiled off from the refrigerant. Air moving devices axially move air through the housing. Air is flowed across the condenser tubes to facilitate condensation.
摘要:
The heat exchanger of the present invention provides a plurality of tubes defining refrigerant passages extending vertically from a lower end to an upper end. According to an exemplary embodiment, the refrigerant passages carry superheated refrigerant. A bottom header is in fluid communication with the passage at the lower end of the tube, and a top header is in fluid communication with the passage at the upper end of the tube. A plurality of plates extend rearwardly from the tubes to a distal edge. Adjacent plates extending from adjacent tubes are closed off at the distal edges by a connector, and adjacent plates extending from the same tube have a rear opening between the distal edges for receiving air into the assembly. A plurality of orifices are disposed along the plates to allow air from the rear opening to flow downstream between the tubes. A water tank and wicking material are provided for wetting the plates. The water abstracts heat from air passing over the plates and evaporates into the airstream. The cooled air continues downstream toward the tubes, and receives heat rejected from the superheated refrigerant.
摘要:
A heat sink assembly for cooling an electronic device comprises a fan housed in a shroud, the fan including a hub and fan blades extending therefrom for causing an axially directed airflow through the shroud upon rotation of the fan blades. A thermosiphon comprises an evaporator defining an evaporating chamber containing a working fluid therein and further including a condenser mounted thereabove. The thermosiphon is positioned at one end of the shroud such that the fan is aligned with the condenser for directing the axial airflow therethrough. The condenser includes a plurality of tubes forming a tube grouping. Each tube having an opening in fluid communication with the evaporator and for receiving and condensing vapor of the working fluid received from the evaporator. The tubes are axially aligned with the airflow and are laterally positioned such that a lateral width of the tube grouping is approximately equal to a width of the hub and substantially in lateral alignment therewith.
摘要:
A heat exchanger assembly is provided including a multi-function boiling chamber having a top wall and a bottom wall parallel to the top wall and a first side wall and a second side wall both extending inwardly from the bottom wall to the top wall and a pair of end walls closing the chamber. First and second condensing tubes attached to the first and second side walls, respectively, of the boiling chamber have an elongated width presenting an upper surface and a lower surface and extend in opposite respective directions to distal ends of the tubes at an inclined angle relative to the bottom wall of the boiling chamber. The condensing tubes include a plurality of channels across the width and extending from the boiling chamber to the distal end of the tube. A tank disposed at each of the distal ends of the condensing tubes is in fluid communication with the channels tubes. Upper air fins extending upwardly in a plane containing the top wall of the boiling chamber and lower air fins extending downwardly in a plane containing the bottom wall of the boiling chamber engage the respective upper and lower surfaces of both condensing tubes between the respective side walls of the boiling chamber and a position adjacent the respective distal ends of the condensing tubes.
摘要:
A heat exchanger assembly is provided including a multi-function boiling chamber having a top wall and a bottom wall parallel to the top wall and a first side wall and a second side wall both extending inwardly from the bottom wall to the top wall and a pair of end walls closing the chamber. First and second condensing tubes attached to the first and second side walls, respectively, of the boiling chamber have an elongated width presenting an upper surface and a lower surface and extend in opposite respective directions to distal ends of the tubes at an inclined angle relative to the bottom wall of the boiling chamber. The condensing tubes include a plurality of channels across the width and extending from the boiling chamber to the distal end of the tube. A tank disposed at each of the distal ends of the condensing tubes is in fluid communication with the channels tubes. Upper air fins extending upwardly in a plane containing the top wall of the boiling chamber and lower air fins extending downwardly in a plane containing the bottom wall of the boiling chamber engage the respective upper and lower surfaces of both condensing tubes between the respective side walls of the boiling chamber and a position adjacent the respective distal ends of the condensing tubes.
摘要:
A thermosiphon cooling assembly includes a refrigerant disposed in a lower portion of a housing for undergoing a liquid-to-vapor-to-condensate cycle. A mixing device is disposed within the lower portion of the housing for increasing the transfer of heat from the electronic device during the liquid-to-vapor-to-condensate cycle. The mixing device may include a vapor stirrer disposed above the liquid of the refrigerant and/or a liquid stirrer disposed in the liquid of the refrigerant for moving the liquid of the refrigerant over a boiler plate.
摘要:
An integrated liquid cooling unit comprising a liquid pump and a U-shaped flat tube. An adapter rigidly connects and establishes fluid communication between the pump and the tube creating an integrated unit for cooling an electronic chip via a closed loop. Heat is rejected from the coolant through cooling fins disposed between the legs of the U-shaped tube to passing air being propelled by a blower assembly.
摘要:
The invention provides a heat sink device for receiving heat generated by an electrical chip. The heat sink device includes a cold plate having a bottom surface for receiving heat from the electrical chip and a top surface opposite of the bottom surface. The heat sink device also includes a finger member having a rounded tip centered on the top surface. The heat sink device also includes a force generating device having an anvil spaced from the finger member and a compressible member compressed between the anvil and the finger member. The compressible member generates a pressing force urging the finger member and the top surface together. The heat sink device also includes a moving device operable to move one of the anvil and the finger member relative to the other to change the pressing force generated by the compressible member.
摘要:
The subject invention provides a cooling assembly for removing heat from an electronic device. The cooling assembly includes a heat sink having a base plate and a plurality of fins extending upwardly from the base plate to a top extremity. A nozzle directs a flow of cooling fluid onto the fins and is disposed above the base plate and below the top extremity of the fins. The flow of cooling fluid is discharged from the nozzle adjacent the base plate and then flows upwardly through the fins to remove the heat from the base plate before removing any heat from the fins.
摘要:
The invention provides a heat exchanger assembly having a housing which defines a boiling chamber extending along an axis between opposite ends. A plurality of first condensing tubes extend axially and downwardly in one direction at a first predetermined angle to and below the axis (A) from the housing and a plurality of second condensing tubes extend axially and upwardly in the opposite direction at the same predetermined angle to and above the axis (A) from the housing. The volume of refrigerant in the housing is greater than the volume of the second condensing tubes and the volume of the boiling chamber.