Abstract:
A laminated ceramic capacitor that includes a laminated body that has dielectric ceramic layers including crystal grains and crystal grain boundaries and has internal electrode layers; and external electrodes on the surface of the laminated body and electrically connecting the internal electrode layers exposed at the surfaces of the laminated body. When a direct-current voltage is applied to the laminated ceramic capacitor, the voltage/current curve has a critical point dividing the curve into a first area on the lower-voltage side and a second area on the higher-voltage side, an electric field obtained by dividing the critical voltage at the critical point by the thickness of one of the dielectric ceramic layers when the voltage (V)/current (I) characteristics are measured at 25° C. is 10 V/μm or more, and the voltage/current curve has a slope of 3 or less in the second area.
Abstract:
A dielectric ceramic that can be sintered at a sufficiently low temperature and has a desired specific resistance at a high temperature, and a multilayer ceramic electronic component (a multilayer ceramic capacitor and the like) using the dielectric ceramic are provided. The multilayer ceramic capacitor includes a multilayer body having a plurality of laminated dielectric ceramic layers, and a plurality of internal electrodes at interfaces between the dielectric ceramic layers; and external electrodes 8 and 9 on outer surfaces of the multilayer body. The composition of the multilayer body includes a perovskite-type compound containing Ba and Ti (where a part of Ba may be substituted by Ca, and a part of Ti may be substituted by Zr) as a primary ingredient, and further includes M (where M is at least one of Cu, Zn, Li, K, and Na) and Bi. The total content of M and Bi is equal to or greater than 3 molar parts when the total content of Ti and Zr is 100 molar parts. The crystal particle size of the dielectric ceramic is 30 nm or more and 150 nm or less.
Abstract:
A dielectric ceramic enabling low-temperature firing and exhibiting good dielectric characteristics, and a stack ceramic electronic component using the same are provided. The dielectric ceramic containing (Ba1-x-yCaxSry)m(Ti1-zZrz)O3 (1.005≦m≦1.2, 0≦x+y≦0.2, and 0≦z≦0.2) as a major component and an amount of Bi relative to 100 parts by mol of the major component which is 1.0 part by mol or more and 40 parts by mol or less.