Abstract:
A lead-based alloy containing alloying additions of bismuth, antimony, arsenic, and tin is used for the production of doped leady oxides, lead-acid battery active materials, lead-acid battery electrodes, and lead-acid batteries.
Abstract:
A dielectric composition, a dielectric element, an electronic component and a laminated electronic component are disclosed. In an embodiment the dielectric composition includes particles having a perovskite crystal structure including at least Bi, Na, Sr and Ti, wherein at least some of the particles have a core-shell structure including a core portion and a shell portion, and wherein the content of Bi present in the core portion is no greater than 0.83 times the content of Bi present in the shell portion.
Abstract:
An object of the present disclosure is to provide a solid electrolyte material with excellent fluoride ion conductivity. The present disclosure achieves the object by providing a solid electrolyte material to be used for a fluoride ion battery, the solid electrolyte material comprising: a composition of BixM1-xF2+x, in which 0.4≤x≤0.9, and M is at least one kind of Sn, Ca, Sr, Ba, and Pb; and a crystal phase that has a Tysonite structure.
Abstract:
The present invention relates to an anode material for lithium-ion batteries. The anode material for lithium-ion batteries is represented by the molecular formula: MxNyTizO(x+3y+4z)/2, where: 0≤x≤8, 1≤y≤8, and 1≤z≤8; M is an alkali metal selected from the group consisting of Li, Na, and K; and N is a group VA element selected from the group consisting of P, Sb, and Bi or a rare earth metal selected from the group consisting of Nd, Pm, Sm, Eu, Yb, and La. The anode material of the present invention has a delithiation potential of 0.8 to 1.2 V vs. Li+/Li, and has a better potential plateau, better cycle performance, and better output-input properties, than a titanium-based anode material.
Abstract:
The present invention relates to pigments based on bismuth compounds and to the use thereof, preferably as laser-absorbing additive, and to a process for the preparation thereof.
Abstract:
A semiconductor ceramic composition is represented by the formula [(Biθ—Naδ)x(Ba1-yRy)1-x]TiO3 (R being at least one kind of rare earth element), in which x, y, θ and δ satisfy 0
Abstract translation:半导体陶瓷组合物由式[(Bi + Thetas;-Naδ)x(Ba 1-y R y)1-x] TiO 3(R是至少一种稀土元素)表示,其中x,y, 并且δ满足0
Abstract:
The present disclosure relates to a process for synthesis of barium bismuth sulfide nanofibers, having equivalent shielding capacity as lead. The present disclosure also relates to a radiation shielding articles and cosmeceuticals.
Abstract:
The present teachings provide, in part, methods of separating two-dimensional nanomaterials by atomic layer thickness. In certain embodiments, the present teachings provide methods of generating graphene nanomaterials having a controlled number of atomic layer(s).
Abstract:
A garnet-type solid electrolyte contains a crystal having (110) face, (1-10) face, (112) face, (1-12) face, and (11-2) face, the garnet-type solid electrolyte being Li7La3Zr2O12. A battery includes a solid electrolyte interposed between a positive and a negative electrode, the solid electrolyte being the garnet-type solid electrolyte. A method of producing a garnet-type solid electrolyte represented by a composition formula Li7La3Zr2O12 and has (110) face, (1-10) face, (112) face, (1-12) face, and (11-2) face as a crystal face, including a step of preparing a lithium-containing compound, a lanthanum-containing compound, and a zirconium-containing compound; a step of mixing these compounds such that a molar ratio among the elements satisfies Li:La:Zr=a:b:c (where a is from 120 to 160, b is from 1 to 5, and c is from 1 to 5); and a step of heating the mixture between 400 and 1,200° C.
Abstract:
Provided are a composite including a lithium titanium oxide and a bismuth titanium oxide, a method of manufacturing the composite, an anode active material including the composite, an anode including the anode active material, and a lithium secondary battery having improved cell performance by including the anode.