Abstract:
A dielectric ceramic that includes multiple crystal grains, each of the multiple crystal grains having an interface, a barium titanate (BaTiO3)-based compound as a main component thereof, and a rare earth element. The dielectric ceramic has a cross-section in which the multiple crystal grains has a concentration varying region, a high concentration region, and a low concentration region. The concentration varying region has an RE/Ti ratio differing by 3% or more. The high concentration region has an RE/Ti ratio of 5% to 20%. The low concentration region has an RE/Ti ratio of 0% to 2%.
Abstract:
A monolithic ceramic capacitor that contains a perovskite compound including Ba and Ti and at least one type of element selected from Gd, Tb, and Dy, and contains elements selected from Y, Si, Mn, Mg, and Zr. The content a of at least one element selected from Gd, Tb, and Dy satisfies 0.2≤a≤0.8, the content b of Y satisfies 0.0≤b≤0.5, the content c of Si satisfies 0.0≤c≤2.5, the content d of Mn satisfies 0.0≤d≤0.25, the content e of Mg satisfies 0.0≤e≤1.2, the content f of Zr satisfies 0.0≤f≤0.5, and the molar ratio m of the content of Ba/(f+the content of Ti) satisfies 0.99≤m≤1.01, where the total content of Ti is 100 parts by mole.
Abstract:
A multilayer ceramic capacitor includes a laminated body including an inner layer portion including ceramic dielectric layers and internal electrodes, and outer layer portions including ceramic dielectric layers. External electrodes connected to the internal electrodes are provided on both ends of the laminated body. The main constituent of the inner layer portion is a perovskite-type compound represented by ABO3. The outer layer portions include first outer layers and second outer layers respectively containing oxides that differ from each other in main constituents, and boundary reaction layers are provided between the first outer layers and the second outer layers. First ceramic dielectric layers outside the boundary reaction layers differ in color from second ceramic dielectric layers inside the boundary reaction layers.
Abstract:
Provided is a laminated ceramic capacitor which can suppress degradation of the insulation resistance due to the addition of vanadium. Second insulating layers are stacked on both sides in the stacking direction of a first insulating layer group, which has first insulating layers stacked over one another, and internal electrodes are placed on principal surfaces of the first insulating layers. At least one internal electrode is placed between the first and second insulating layers. Both contain, as their main constituent, a perovskite-type compound represented by the formula “ABO3” wherein “A” denotes at least one of Ba, Sr, and Ca, “B” denotes at least one of Ti, Zr, and Hf. V is added to only the first insulating layers.
Abstract:
A multilayer ceramic capacitor includes a ceramic main body including an inner layer portion including third ceramic layers and a plurality of inner electrodes arranged at interfaces between the third ceramic layers, and first and second outer layer portions respectively including first and second ceramic layers, the first and second ceramic layers being arranged vertically so as to sandwich the inner layer portion. The third ceramic layers and the first and second outer layer portions contain a perovskite-type compound represented by ABO3 where A contains one or more of Ba, Sr, and Ca, B contains one or more of Ti, Zr, and Hf, and O represents oxygen) as a main component. Where a rare-earth element concentration (CR) in the third ceramic layers is compared to a rare-earth element concentration (Cr) in outermost layer portions including at least outermost surfaces of the first and second outer layer portions, CR>Cr (inclusive of Cr=0).
Abstract:
A laminated ceramic capacitor including a laminated body having a plurality of stacked ceramic layers and internal electrodes located between the ceramic layers. The internal electrodes have a plurality of ceramic columnar members formed therein, which project into the internal electrodes from interfaces between the ceramic layers and the internal electrodes, but do not penetrate in the thickness direction of the internal electrodes.
Abstract:
Provided is a laminated ceramic capacitor which can suppress degradation of the insulation resistance due to the addition of vanadium. Second insulating layers are stacked on both sides in the stacking direction of a first insulating layer group, which has first insulating layers stacked over one another, and internal electrodes are placed on principal surfaces of the first insulating layers. At least one internal electrode is placed between the first and second insulating layers. Both contain, as their main constituent, a perovskite-type compound represented by the formula “ABO3” wherein “A” denotes at least one of Ba, Sr, and Ca, “B” denotes at least one of Ti, Zr, and Hf. V is added to only the first insulating layers.