Abstract:
A multilayer ceramic capacitor includes a laminated body including an inner layer portion including ceramic dielectric layers and internal electrodes, and outer layer portions including ceramic dielectric layers. External electrodes connected to the internal electrodes are provided on both ends of the laminated body. The main constituent of the inner layer portion is a perovskite-type compound represented by ABO3. The outer layer portions include first outer layers and second outer layers respectively containing oxides that differ from each other in main constituents, and boundary reaction layers are provided between the first outer layers and the second outer layers. First ceramic dielectric layers outside the boundary reaction layers differ in color from second ceramic dielectric layers inside the boundary reaction layers.
Abstract:
A multilayer ceramic electronic component that has a multilayer portion having an outer layer portion adjacent region including an area in contact with an outer layer portion that forms a thermal-shock absorbing portion that includes curved ceramic layers and inner electrode layers smoothly varying in thickness from point to point. A region to an inside of the thermal-shock absorbing portion forms a normal multilayer portion that includes ceramic layers with less curvature than the ceramic layers in the thermal-shock absorbing portion and inner electrode layers with less variation in thickness from point to point in a direction along a principal surface of the outer layer portion than the inner electrode layers in the thermal-shock absorbing portion.
Abstract:
A monolithic ceramic capacitor that contains a perovskite compound including Ba and Ti and at least one type of element selected from Gd, Tb, and Dy, and contains elements selected from Y, Si, Mn, Mg, and Zr. The content a of at least one element selected from Gd, Tb, and Dy satisfies 0.2≦a≦0.8, the content b of Y satisfies 0.0≦b≦0.5, the content c of Si satisfies 0.0≦c≦2.5, the content d of Mn satisfies 0.0≦d≦0.25, the content e of Mg satisfies 0.0≦e≦1.2, the content f of Zr satisfies 0.0≦f≦0.5, and the molar ratio m of the content of Ba/(f+the content of Ti) satisfies 0.99≦m≦1.01, where the total content of Ti is 100 parts by mole.
Abstract:
A laminated ceramic capacitor having a laminated body composed of a plurality of ceramic layers for inner layers; a plurality of internal electrodes at the interfaces between the plurality of ceramic layers for inner layers; and a plurality of ceramic layers for outer layers, provided on the top and bottom so as to sandwich the plurality of ceramic layers for inner layers. The ceramic layers for inner layers are composed of a material containing a multiple oxide including an alkaline-earth metal. The ceramic layers for outer layers respectively have TiO2 ceramic layers containing TiO2 as their main constituent for certain layers including the outermost layers, and multiple oxide ceramic layers containing a multiple oxide including an alkaline-earth metal for the other layers.
Abstract:
A laminated ceramic capacitor having a laminated body composed of a plurality of ceramic layers for inner layers; a plurality of internal electrodes at the interfaces between the plurality of ceramic layers for inner layers; and a plurality of ceramic layers for outer layers, provided on the top and bottom so as to sandwich the plurality of ceramic layers for inner layers. The ceramic layers for inner layers are composed of a material containing a multiple oxide including an alkaline-earth metal. The ceramic layers for outer layers respectively have TiO2 ceramic layers containing TiO2 as their main constituent for certain layers including the outermost layers, and multiple oxide ceramic layers containing a multiple oxide including an alkaline-earth metal for the other layers.
Abstract:
A laminated body is divided into a large grain region and a small grain region. The large grain region is located outside the small grain region, and a boundary surface between the regions is located inside the outer surface of the laminated body while surrounding a section in which internal electrodes are present in the laminated body. To obtain the laminated body, firing is carried out with a profile in which the average rate of increase from room to the maximum temperature is 40° C./second or more.
Abstract:
A multilayer ceramic capacitor includes a ceramic main body including an inner layer portion including third ceramic layers and a plurality of inner electrodes arranged at interfaces between the third ceramic layers, and first and second outer layer portions respectively including first and second ceramic layers, the first and second ceramic layers being arranged vertically so as to sandwich the inner layer portion. The third ceramic layers and the first and second outer layer portions contain a perovskite-type compound represented by ABO3 where A contains one or more of Ba, Sr, and Ca, B contains one or more of Ti, Zr, and Hf, and O represents oxygen) as a main component. Where a rare-earth element concentration (CR) in the third ceramic layers is compared to a rare-earth element concentration (Cr) in outermost layer portions including at least outermost surfaces of the first and second outer layer portions, CR>Cr (inclusive of Cr=0).
Abstract:
A laminated ceramic capacitor including a laminated body having a plurality of stacked ceramic layers and internal electrodes located between the ceramic layers. The internal electrodes have a plurality of ceramic columnar members formed therein, which project into the internal electrodes from interfaces between the ceramic layers and the internal electrodes, but do not penetrate in the thickness direction of the internal electrodes.
Abstract:
A multilayer ceramic electronic component that has a multilayer portion having an outer layer portion adjacent region including an area in contact with an outer layer portion that forms a thermal-shock absorbing portion that includes curved ceramic layers and inner electrode layers smoothly varying in thickness from point to point. A region to an inside of the thermal-shock absorbing portion forms a normal multilayer portion that includes ceramic layers with less curvature than the ceramic layers in the thermal-shock absorbing portion and inner electrode layers with less variation in thickness from point to point in a direction along a principal surface of the outer layer portion than the inner electrode layers in the thermal-shock absorbing portion.
Abstract:
A dielectric ceramic that includes multiple crystal grains, each of the multiple crystal grains having an interface, a barium titanate (BaTiO3)-based compound as a main component thereof, and a rare earth element. The dielectric ceramic has a cross-section in which the multiple crystal grains has a concentration varying region, a high concentration region, and a low concentration region. The concentration varying region has an RE/Ti ratio differing by 3% or more. The high concentration region has an RE/Ti ratio of 5% to 20%. The low concentration region has an RE/Ti ratio of 0% to 2%.