Abstract:
A multilayer ceramic capacitor that contains at least one kind of a first element that forms a covalent hydride with hydrogen (except for an element generating a hydride having a boiling point of less than 125° C.) and a second element that forms a hydride in a boundary region with hydrogen between an outermost plating layer constituting an external electrode and a dielectric layer constituting a ceramic element body.
Abstract:
A multilayer electronic component includes a multilayer body including dielectric layers and inner electrode layers, the multilayer body including an electrode facing portion in which the inner electrode layers are laminated to face each other with the dielectric layers interposed therebetween. The multilayer body has a thickness of at least about 1.5 mm in a lamination direction, a length of at least about 3.0 mm, and a width of at least about 1.5 mm. Each of the dielectric layers includes Ba, Ti, and Cl. A Cl concentration C1 in the entire electrode facing portion satisfies about 10 wtppm
Abstract:
A multilayer ceramic capacitor contains Ni in internal electrodes, and includes a sintered metal layer containing Cu in external electrodes. At a joined portion between each internal electrode and each external electrode, mutual diffusion layers of Cu and Ni extend across the internal and external electrodes. On each internal electrode, a mutual diffusion layer is present with a thickness t1, which is defined by a dimension from a first end surface or a second end surface to an interior end in a longitudinal direction, not smaller than about 0.5 μm and not greater than about 5 μm. On each external electrode, a mutual diffusion layer is present with a thickness t2, which is defined by a dimension from the first end surface or the second end surface to an exterior end in the longitudinal direction, not smaller than about 2.5% and not greater than about 33.3% of a thickness t0 of a sintered metal layer.
Abstract:
A multilayer ceramic electronic component that has a multilayer portion having an outer layer portion adjacent region including an area in contact with an outer layer portion that forms a thermal-shock absorbing portion that includes curved ceramic layers and inner electrode layers smoothly varying in thickness from point to point. A region to an inside of the thermal-shock absorbing portion forms a normal multilayer portion that includes ceramic layers with less curvature than the ceramic layers in the thermal-shock absorbing portion and inner electrode layers with less variation in thickness from point to point in a direction along a principal surface of the outer layer portion than the inner electrode layers in the thermal-shock absorbing portion.
Abstract:
In a multilayer ceramic capacitor, an inner ceramic layer includes a perovskite-type compound containing Ba and Ti. A region within an electrically effective portion of the inner ceramic layers sandwiched between inner electrodes, which is near an area where inner and outer electrodes connect to each other, is subjected to a mapping analysis using EDS. ((L2−L3)/L1)×100≧50 is satisfied, L1 denotes a total length of ceramic grain boundaries detected from a TEM transmission image, L2 denotes a total length of grain boundaries, detected from a mapping image and the TEM transmission image, where the rare earth element is present, and L3 denotes a total length of portions, detected from a mapping image and the TEM transmission image, in which the grain boundaries where the rare earth element is present and grain boundaries where at least one of Mn, Mg, and Si is present are overlapped.
Abstract:
A first outer electrode and first inner electrodes are supplied with an anode potential and a second outer electrode and second inner electrodes are supplied with a cathode potential when a monolithic ceramic capacitor is mounted and in use. The first outer electrode supplied with the anode potential has a thickness that is greater than a thickness of the second outer electrode supplied with the cathode potential.
Abstract:
A laminated body is divided into a large grain region and a small grain region. The large grain region is located outside the small grain region, and a boundary surface between the regions is located inside the outer surface of the laminated body while surrounding a section in which internal electrodes are present in the laminated body. To obtain the laminated body, firing is carried out with a profile in which the average rate of increase from room to the maximum temperature is 40° C./second or more.
Abstract:
A multilayer ceramic capacitor that includes a layered body in which dielectric layers and internal electrode layers are layered alternately, an external electrode on a surface of the layered body and a plating layer on a surface of the external electrode. The external electrode contains Cu, and a protective layer containing Cu2O is provided at a joining portion between the external electrode and the plating layer. When heat is applied to the layered body after the external electrode is removed, a ratio of an arithmetic mean value Xa of a quantity of hydrogen generated per unit temperature in a range higher than or equal to 350° C. with respect to an arithmetic mean value Y of a quantity of hydrogen generated per unit temperature in a range higher than or equal to 230° C. and lower than or equal to 250° C. (Xa/Y) is less than or equal to 0.66.
Abstract:
A multilayer ceramic capacitor that contains at least one kind of a first element that forms a covalent hydride with hydrogen (except for an element generating a hydride having a boiling point of less than 125° C.) and a second element that forms a hydride in a boundary region with hydrogen between an outermost plating layer constituting an external electrode and a dielectric layer constituting a ceramic element body.
Abstract:
A laminated ceramic capacitor including a laminated body having a plurality of stacked ceramic layers and internal electrodes located between the ceramic layers. The internal electrodes have a plurality of ceramic columnar members formed therein, which project into the internal electrodes from interfaces between the ceramic layers and the internal electrodes, but do not penetrate in the thickness direction of the internal electrodes.