Abstract:
A reader device is provided having a wider readable area and a table with the reader device. The reader device includes an antenna element communicating with an RFID tag attached to an article, a reader module electrically connected to the antenna element and reading information of the RFID tag through the antenna element, and a case housing the antenna element and the reader module. Moreover, the antenna element includes a first dipole antenna having a first element axis extending in a first direction, and a second dipole antenna having a second element axis extending in a second direction crossing the first direction.
Abstract:
An inductor bridge is configured to bridge-connect a first circuit and a second circuit to each other, and includes a flexible flat plate base body, a first connector at a first end portion of the base body and connected to the first circuit, a second connector at a second end portion of the base body and connected to the second circuit, and an inductor section in the base body between the first connector and the second connector. The inductor section includes conductor patterns including a plurality of layers. The inductor bridge further includes a bending portion between the inductor section and the first connector, and a slot at an inner side of the bending portion that reduces a thickness of the base body.
Abstract:
A reader device is provided having a wider readable area and a table with the reader device. The reader device includes an antenna element communicating with an RFID tag attached to an article, a reader module electrically connected to the antenna element and reading information of the RFID tag through the antenna element, and a case housing the antenna element and the reader module. Moreover, the antenna element includes a first dipole antenna having a first element axis extending in a first direction, and a second dipole antenna having a second element axis extending in a second direction crossing the first direction.
Abstract:
An insulating substrate including a principal surface and coil antennas disposed on the substrate and each including a coil conductor. The coil conductor includes a winding axis in a direction parallel or substantially parallel to the principal surface of the substrate. An auxiliary loop conductor that is connected to the coil conductors of the coil antennas and generates a magnetic flux that is in phase with those of the coil antennas as seen from the direction of the winding axis of the coil conductor is provided in and on the substrate.
Abstract:
An inductor bridge is provided with a flexible flat plate-shaped element body, a first connector, and a second connector. The element body includes therein an inductor portion. The inductor portion is configured by a spiral conductor pattern. The first connector is provided on the element body and is connected to a first circuit. The second connector is provided on the element body and is connected to a second circuit.
Abstract:
A coil antenna is provided on an inner surface of a key-top of a key input unit. A power supply coil that is magnetically coupled to the coil antenna and an RFIC are mounted on a substrate holding key switches. A device including an NFC is arranged closer to the key-top so as to make communication with the NFC. Further, a tag of an RFID is arranged closer thereto so as to be read. Thus, a key input unit and an electronic apparatus are configured in which an antenna is not provided on a housing externally and is less influenced by the housing of the electronic apparatus into which the antenna is incorporated.
Abstract:
An antenna device includes an antenna resonance circuit connected to a power supply circuit and a variable-frequency resonance element including a resonance circuit which is coupled with the antenna resonance circuit via an electromagnetic field. The resonant frequency of the resonance circuit is variable within a predetermined frequency band.
Abstract:
In a communication circuit, an RFIC includes an IO terminal and a control IC includes an IO terminal. A variable capacitance element includes control terminals, a capacitance element with a capacitance value that is determined according to a control voltage, and a resistance voltage divider circuit configured to generate the control voltage by dividing a voltage inputted to the control terminals. One of the RFIC and the control IC supplies control data to the variable capacitance element via a signal line. The variable capacitance element, along with an antenna coil, constitutes an antenna circuit of an LC parallel resonance circuit, and sets a resonant frequency of the antenna circuit to be a predetermined frequency.