Abstract:
A multilayer ceramic electronic component includes a multilayer ceramic element with first through sixth surfaces, a center outer electrode located between a first-side outer electrode and a second-side outer electrode on the multilayer ceramic element. A first plated film is provided on the center outer electrode, second plated films are provided on the first-side outer electrode and the second-side outer electrode, respectively, and a thickness of each of the second plated films is greater than a thickness of the first plated film.
Abstract:
In a laminated ceramic electronic component, a side surface outer electrode circles around a ceramic element body, a first electrode portion includes a first side surface electrode portion on first and second side surfaces of the ceramic element body and a first wrap-around electrode portion extending from the first side surface electrode portion and wraps around portions of third and fourth side surfaces, and a second electrode portion includes a second side surface electrode portion on the third and fourth side surfaces and a second wrap-around electrode portion extending from the second side surface electrode portion and wrap around portions of the first and second side surfaces. External appearance configurations in which the first and second wrap-around electrode portions are recognizable from outside are provided to the first and second wrap-around electrode portions.
Abstract:
A through-type multilayer ceramic capacitor includes a multilayer body including laminated dielectric layers, inner electrode layers laminated on the dielectric layers, first and second inner electrode layer, a first outer electrode on a first end surface of the multilayer body and connected to the first inner electrode layer, a second outer electrode on a second end surface of the multilayer body and connected to the first inner electrode layer, a third outer electrode on a first side surface of the multilayer body and connected to the second inner electrode layer, and a fourth outer electrode on a second side surface of the multilayer body and connected to the second inner electrode layer. The first outer electrode includes a first plating layer and a first charging electrode, and the second outer electrode includes a second plating layer and a second charging electrode.
Abstract:
A multilayer ceramic electronic component includes a multilayer body including laminated ceramic layers and internal electrode layers. The internal electrode layers include a first internal electrode layer laminated alternately with the ceramic layers and exposed at a first and second end and a second internal electrode layer laminated alternately with the ceramic layers and exposed at a first and second side surface, the multilayer ceramic electronic component further includes a dummy electrode spaced apart from the first and second internal electrode layers and exposed at one of the first and second end surfaces and the first and second side surfaces. A line coverage of a conductive component is smaller than about 50% in a region separated from an exposed portion of the dummy electrode toward a center of the multilayer body by about 50% or more.
Abstract:
A method of manufacturing a multilayer ceramic capacitor includes preparing a laminate by providing ceramic layers and internal electrode layers arranged in a stacking direction, and providing two or more exposure regions at which the internal electrode layers and the ceramic layer interposed between the internal electrode layers are both exposed, and transferring a first conductive paste to the laminate. In the preparing, forming the laminate to have a rectangular parallelepiped configuration or shape and to include two longitudinal end surfaces, and four surfaces orthogonal to the end surfaces and, on at least one of the four surfaces, a protrusion in which the exposure region protrudes outward. In the transferring, the first conductive paste is applied to a transfer jig including a groove, and the first conductive paste in the groove is transferred to a surface of the protrusion.
Abstract:
A multilayer ceramic electronic component includes a laminated body, a first external electrode, a pair of second external electrodes, and a pair of insulating coating portions. The pair of insulating coating portions extends in a laminating direction between each of the pair of second external electrodes and the first external electrode on a second principal surface, from the second principal surface to respective portions of a first side surface and a second side surface. A maximum thickness of the first external electrode on the second principal surface is larger than a maximum thickness of the pair of second external electrodes on the second principal surface. The maximum thickness of the pair of second external electrodes on the second principal surface is larger than a maximum thickness of the pair of insulating coating portions on the second principal surface.
Abstract:
A multilayer ceramic electronic component includes a laminated body, a first external electrode, a pair of second external electrodes, and a pair of insulating coating portions. The insulating coating portions extend in a laminating direction between each of the second external electrodes and the first external electrode on a second principal surface, and from the second principal surface to respective portions of first and second side surfaces. A maximum thickness of the first external electrode on the second principal surface is larger than a maximum thickness for each of the second external electrodes on the second principal surface. A maximum thickness for each of the insulating coating portions on the second principal surface is larger than the maximum thickness of the first external electrode on the second principal surface.
Abstract:
An electronic component having excellent reliability includes a first lateral surface and two external electrodes on an outermost side in a length direction among three or more external electrodes on the first lateral surface that are thicker than the other external electrode. On a second lateral surface, two external electrodes that are located on the outermost side in the length direction among three or more external electrodes disposed on the second lateral surface are thicker than the other external electrode.
Abstract:
In a multilayer capacitor, a multilayer capacitor main body includes first and second main surfaces, first and second side surfaces, and first and second end surfaces, the first and second main surfaces extending in a length direction and a width direction, the first and second side surfaces extending in the length direction and a thickness direction, and the first and second end surfaces extending in the width direction and the thickness direction. The second main surface is depressed in a portion extending from opposite ends of the second main surface toward a center of the second main surface in the length direction.
Abstract:
In a multilayer capacitor, a multilayer capacitor main body includes first and second main surfaces, first and second side surfaces, and first and second end surfaces, the first and second main surfaces extending in a length direction and a width direction, the first and second side surfaces extending in the length direction and a thickness direction, and the first and second end surfaces extending in the width direction and the thickness direction. The second main surface is depressed in a portion extending from opposite ends of the second main surface toward a center of the second main surface in the length direction.