Abstract:
Systems and methods for controlling battery charge levels to maximize savings in a behind the meter energy management system include predicting a demand charge threshold with a power demand management controller based on historical load. A net energy demand is predicted for a current day with a short-term forecaster. A demand threshold maximizes financial savings using the net energy demand using a rolling time horizon optimizer by concurrently optimizing the demand charge savings and demand response rewards. A load reduction capability factor of batteries is determined with a real-time controller corresponding to an amount of energy to fulfill the demand response rewards. The net energy demand is compared with the demand threshold to determine a demand difference. Battery charge levels of the one or more batteries are controlled with the real time controller according to the demand difference and the load reduction capability factor.
Abstract:
Systems and methods for controlling battery charge levels to maximize savings in a behind the meter energy management system include predicting a demand charge threshold with a power demand management controller based on historical load. A net energy demand is predicted for a current day with a short-term forecaster. A demand threshold maximizes financial savings using the net energy demand using a rolling time horizon optimizer by concurrently optimizing the demand charge savings and demand response rewards. A load reduction capability factor of batteries is determined with a real-time controller corresponding to an amount of energy to fulfill the demand response rewards. The net energy demand is compared with the demand threshold to determine a demand difference. Battery charge levels of the one or more batteries are controlled with the real time controller according to the demand difference and the load reduction capability factor.
Abstract:
Systems and methods for controlling battery charge levels to maximize savings in a behind the meter energy management system include predicting a demand charge threshold with a power demand management controller based on historical load. A net energy demand is predicted for a current day with a short-term forecaster. A demand threshold maximizes financial savings using the net energy demand using a rolling time horizon optimizer by concurrently optimizing the demand charge savings and demand response rewards. A load reduction capability factor of batteries is determined with a real-time controller corresponding to an amount of energy to fulfill the demand response rewards. The net energy demand is compared with the demand threshold to determine a demand difference. Battery charge levels of the one or more batteries are controlled with the real time controller according to the demand difference and the load reduction capability factor.
Abstract:
Systems and methods for controlling behind-the meter energy storage/management systems (EMSs) to maximize battery lifetime, including determining optimal monthly demand charge thresholds based on a received customer load profile, battery manufacturer specifications, and battery operating conditions and parameters. The determining of the monthly demand charge threshold includes iteratively performing daily optimizations to determine battery utilization, and minimize demand charge for each day for the load profile. A battery lifetime is predicted based on manufacturer specifications and utilization determined by the daily optimizations. A battery capacity retention value and battery capacity loss are determined based on an annual discharged energy (AADE) and an average battery state-of-charge (SoC). An optimal monthly demand threshold is selected based on the predicted battery lifetime and demand charge utilization. EMS operations are controlled by tuning the battery parameters to provide maximum demand charge and battery lifetime for the customer load profile using a real-time controller.
Abstract:
A computer-implemented method is provided for controlling a Battery Energy Storage System (BESS) having a battery set and connected to a Photovoltaic (PV) panel set. The method includes enforcing, by a processor device, a multi-objective Model Predictive Control (MPC) optimization on the BESS. The multi-objective MPC optimization includes a first objective of reducing a possibility of Demand Charge Threshold violations by minimal DCT increments which provide a higher demand charge savings, a second objective of improving a robustness of the BESS against energy forecast errors by increasing a State Of Charge (SOC) of the battery set, and a third objective of maximizing PV-utilization. The method further includes controlling, by the processor device, charging and discharging of the BESS in accordance with the multi-objective MPC optimization to meet the first, second, and third objectives.
Abstract:
The invention is directed to a method or management system which 1) dispatches high efficiency generators first, 2) charges/discharges energy storage units in a way to enhance efficiency of generators in the system or avoid the necessity of dispatching generators during their low efficiency operations at all. In this way the method or management system utilizes its knowledge about the efficiency characteristics of generators in the system and its ability to change the net demand seen by the generators through charge and discharge of energy storage units to increase the overall efficiency of the energy system.
Abstract:
Systems and methods are disclosed for multi-objective energy management of micro-grids. A two-layer control method is used. In the first layer which is the advisory layer, a Model Predictive Control (MPC) method is used as a long term scheduler. The result of this layer will be used as optimality constraints in the second layer. In the second layer, a real-time controller guarantees a second-by-second balance between supply and demand subject to the constraints provided by the advisory layer.
Abstract:
Systems and methods for controlling battery charge levels to maximize savings in a behind the meter energy management system include predicting a demand charge threshold with a power demand management controller based on historical load. A net energy demand is predicted for a current day with a short-term forecaster. A demand threshold maximizes financial savings using the net energy demand using a rolling time horizon optimizer by concurrently optimizing the demand charge savings and demand response rewards. A load reduction capability factor of batteries is determined with a real-time controller corresponding to an amount of energy to fulfill the demand response rewards. The net energy demand is compared with the demand threshold to determine a demand difference. Battery charge levels of the one or more batteries are controlled with the real time controller according to the demand difference and the load reduction capability factor.
Abstract:
A computer-implemented method predicting a life span of a battery storage unit by employing a deep neural network is presented. The method includes collecting energy consumption data from one or more electricity meters installed in a structure, analyzing, via a data processing component, the energy consumption data, removing one or more features extracted from the energy consumption data via a feature engineering component, partitioning the energy consumption data via a data partitioning component, and predicting battery capacity of the battery storage unit via a neural network component sequentially executing three machine learning techniques.
Abstract:
A computer-implemented method, system, and computer program product are provided for demand charge management. The method includes receiving an active power demand for a facility, a current load demand charge threshold (DCT) profile for the facility, and a plurality of previously observed load DCT profiles. The method also includes generating a data set of DCT values based on the current load DCT profile for the facility and the plurality of previously observed load DCT profiles. The method additionally includes forecasting a next month DCT value for the facility using the data set of DCT values. The method further includes preventing actual power used from a utility from exceeding the next month DCT value by discharging a battery storage system into a behind the meter power infrastructure for the facility.