Abstract:
Aspects of the present disclosure describe systems, methods, and structures for passive optical add/drop multiplexing (POADM) architectures that remove the prior art requirement of an optical amplifier (i.e., repeater-less) at the POADM nodes.
Abstract:
Aspects of the present disclosure are directed to the mitigation of multi-path interference from quasi-single-mode fiber using hybrid span configuration and digital signal processing wherein a hybrid span of quasi-single mode fibers and single-mode fibers are used to configure the hybrid span. Additional aspects are directed to introducing a low-baud rate sub-banding signal to reduce the number of DD-LMS taps required when compensating the multi-path interference as the low-baud rate signal requires fewer taps to cover a given range of MPI as compared to a high-baud rate signal. Finally further aspects are directed to an ALMS equalizer which further reduces the number of equalizer taps by shifting its center tap towards the right if higher-order modes transmit slower than a fundamental mode, otherwise the center tap is shifted to the left.
Abstract:
A system to perform distributed acoustic sensing (DAS) in an environment with acoustic vibrations present includes at least an optical fiber positioned in said environment, wherein the optical fiber comprises N spatial channels and N laser pulses are launched into the N spatial channels of the optical fiber and propagate over a fiber length; and one or more sensors to measure N signals of acoustic vibration amplitude and frequency from each of N spatial channels, wherein the N signals are digitally added for spatial averaging and applied to determine DAS.
Abstract:
Disclosed herein are methods, structures and systems for few-mode fiber (FMF) transmission including an optical amplifier exhibiting modal gain control suitable for such transmission in which higher order modes are amplified. An exemplary evaluation system is described and results presented.
Abstract:
Aspects of the present disclosure describe distributed fiber optic sensing (DFOS)/distributed acoustic sensing (DAS) systems, methods, and structures exhibiting a sensitivity enhancement via MIMO sampling and phase recombination.
Abstract:
Aspects of the present disclosure describe improved distributed acoustic sensing using dynamic range suppression of optical time domain reflectometry either by using a feedback loop comprising optical and electrical elements or using a nonlinear element in the electrical domain after coherent detection. When using a feedback loop, the amplitude of the periodic waveform of coherent OTDR can be inverted. This allows optical pre-compensation of the received optical signal before coherent detection with the goal of minimizing amplitude dynamic range. Alternatively, a nonlinear element in the electrical domain can reduce amplitude dynamic range before sampling by analog-to-digital converters (ADC).
Abstract:
A spatial averaging method for a coherent distributed acoustic sensing (DAS) system that employs differential beating and polarization combining of signals for two locations along a length of optical sensing fiber to determine phase change in-between every location along the length of the optical sensing fiber and a moving average using polarization combining output to reduce any Rayleigh fading before phase determination.
Abstract:
Systems, methods, and structures that provide distributed acoustic sensing using chirped optical pulses of selectable duration and bandwidth, at a frame rate limited by a round-trip propagation time of a fiber under test. Instead of processing a transmitted chirped pulse as a single sequence—our systems, methods, and structures employ a parallel fragmented multiband architecture, where each tributary correlates the received signal with a truncated chirped pulse to obtain the Rayleigh impulse response over its frequency band. By reducing the duration of the chirp processed by each tributary, spatial leakage is reduced at all the tributaries, thus even after combining all the interferometric products from all tributaries using a rotated vector sum, the resultant signal is much less impacted by spatial leakage than by using a conventional TGD-OFDR method.
Abstract:
Aspects of the present disclosure describe systems, methods, and structures for high speed frequency hopping distributed acoustic sensing using an acousto-optic modulated (AOM), gated re-circulating loop and a frequency shifted receiver local oscillator. Using the re-circulating loop controlled by the AOM to generate frequency-hopping pulse(s) increases DAS acoustic bandwidth overcomes infirmities exhibited in the art that generate multiple frequency patterns that are not suitable for long-distance DAS. Additionally, by employing frequency shifted local oscillator (LO) with asymmetric in band detection, bandwidth requirements are reduced by one half.
Abstract:
Aspects of the present disclosure describe systems, methods and structures providing bidirectional optical fiber communication and sensing using the same fiber transmission band and bidirectional WDM fiber sharing such that communications channels and optical fiber sensing channel(s) coexist on the same fiber. As a result, nonlinear interaction between communications channels and interrogating pulse(s) of sensing are much reduced or eliminated.